DOI QR코드

DOI QR Code

Study on the Generalization of the Extended Framework of Hamilton's Principle in Transient Continua Problems

확장 해밀턴 이론의 일반화에 대한 고찰

  • Kim, Jinkyu (School of Architecture and Architectural Engineering, Hanyang Univ.) ;
  • Shin, Jinwon (College of Architecture, Architectural Engineering, Dankook Univ.)
  • 김진규 (한양대학교 ERICA캠퍼스 건축학과 건축공학부) ;
  • 신진원 (단국대학교 건축대학 건축공학과)
  • Received : 2016.07.20
  • Accepted : 2016.10.10
  • Published : 2016.10.30

Abstract

The present work extends the recent variational formulation to more general time-dependent problems. Thus, based upon recent works of variational formulation in dynamics and pure heat diffusion in the context of the extended framework of Hamilton's principle, formulation for fully coupled thermoelasticity is developed first, then, with thermoelasticity-poroelasticity analogy, poroelasticity formulation is provided. For each case, energy conservation and energy dissipation properties are discussed in Fourier transform domain.

논문은 동역학의 새로운 변분이론인 확장 해밀턴 이론을 열 탄성과 공극 탄성에 적용하여 더욱 일반화하는 것에 그 주요 목적이 있다. 이를 위해 열 탄성학에 대한 이론 적용이 우선적으로 검토되었고, 열 탄성-공극 탄성의 유사성을 바탕으로 공극 탄성에까지 그 이론이 확장되었으며, 각 경우에 대한 푸리에 변환을 통해 그 적정성을 확인하였다.

Keywords

References

  1. Apostolakis, G., Dargush, G.F. (2013) Mixed Variational Principles for Dynamic Response of Thermoelastic and Poroelastic Continua, Int. J. Solids & Struct., 50, pp.642-650. https://doi.org/10.1016/j.ijsolstr.2012.10.021
  2. Biot, M.A. (1956) Theory of Propagation of Elastic Waves in Fluid-Saturated Porous Solid. I. Low Frequency Range, J. Acoust. Soc. Am., 28, pp.168-178. https://doi.org/10.1121/1.1908239
  3. Biot, M.A. (1962a) Mechanics of Deformation and Acoustic Propagation in Porous Media, J. Appl. Phys., 33, pp.1482-1498. https://doi.org/10.1063/1.1728759
  4. Biot, M.A. (1962b) Generalized Theory of Acoustic Propagation in Porous Dissipative Media, J. Acoust. Soc. Am, 34, pp.1254-1264. https://doi.org/10.1121/1.1918315
  5. Chester, M. (1963) Second Sound in Solids, Phys. Rev., 131, pp.2013-2015. https://doi.org/10.1103/PhysRev.131.2013
  6. Hamilton, W.R. (1834) On a General Method in Dynamics, Philos. Trans. Royal Soc. London, 124, pp.247-308. https://doi.org/10.1098/rstl.1834.0017
  7. Hamilton, W.R. (1835) Second Essay on a General Method in Dynamics, Philos. Trans. Royal Soc. London, 125, pp.95-144. https://doi.org/10.1098/rstl.1835.0009
  8. Kim, J., Dargush, G.F., Ju, Y.K. (2013) Extended Framework of Hamilton's Principle for Continuum Dynamics, Int. J. Solids & Struct., 50, pp.3418-3429. https://doi.org/10.1016/j.ijsolstr.2013.06.015
  9. Kim, J. (2014a) A Variational Numerical Method of Linear Elasticity through the Extended Framework of Hamilton's Principle, J. Comput. Struct. Eng. Inst. Korea, 27(1), pp.37-43. https://doi.org/10.7734/COSEIK.2014.27.1.37
  10. Kim, J. (2014b) Higher order Temporal Finite Element Methods through Mixed Formalisms, SpringerPlus, 3, pp.1-25. https://doi.org/10.1186/2193-1801-3-1
  11. Kim, J., Kim. D. (2015) A Quadratic Temporal Finite Element Method for Linear Elastic Structural Dynamics, Math. & Comput. Simul., 117, pp.68-88. https://doi.org/10.1016/j.matcom.2015.05.009
  12. Kim, J., Kim. D. (2016) Temporal Finite Element Methods through the Extended Framework of Hamilton's Principle, J. Mech. Eng. Sci., in press, DOI: 10.1177/0954406216642481.
  13. Kim, J., Dargush, G.F., Lee, H. S. (2016) Extended Framework of Hamilton's Principle in Heat Diffusion, Int. J. Mech. Sci., 114, pp.166-176. https://doi.org/10.1016/j.ijmecsci.2016.04.007
  14. Manolis, G.D., Beskos, D.E. (1989) Integral Formulation and Fundamental Solutions of Dynamic Poroelasticity and Thermoelasticity, ACTA Mechanica, 76, pp.89-104. https://doi.org/10.1007/BF01175798
  15. Maxwell, C. (1867) On the Dynamical Theory of Gases, Philos. Trans. Royal Soc. London, 157, pp.49-88. https://doi.org/10.1098/rstl.1867.0004
  16. Predeleanu, M. (1984) Development of Boundary Element Method to Dynamic Problems for Porous Media, Appl. Math. Modeling, 8, pp.378-382. https://doi.org/10.1016/0307-904X(84)90042-8
  17. Rayleigh, J.W.S. (1877) The Theory of Sound, Dover, New York.