DOI QR코드

DOI QR Code

실험적 포논 평균자유행로 스펙트럼 분포를 이용한 포논 스펙트럼 포논-표면 산란율 모델

Direct Determination of Spectral Phonon-Surface Scattering Rate from Experimental Data on Spectral Phonon Mean Free Path Distribution

  • 진재식 (조선이공대학교 기계설계과)
  • Jin, Jae Sik (Dept. of Mechanical Design, Chosun College of Science & Technology)
  • 투고 : 2016.05.30
  • 심사 : 2016.06.15
  • 발행 : 2016.09.01

초록

본 연구에서는 실험적 데이터를 근간으로 박막재료의 스펙트럼(spectrum) 분포 별 포논-표면 산란율을 직접 계산할 수 있는 모델을 제시했다. 실험 측정결과인 포논 평균자유행로(mean free path, MFP) 스펙트럼 분포 별 열전달 기여도로부터 스펙트럼 의존적 포논-표면 산란율을 직접 도출하는 모델을 개발했고, 이 모델을 아직 실험적 방법으로 포논-표면 산란율을 측정하지 못한 $Si_{0.9}-Ge_{0.1}$ 나노선(Nanowire, NW)에 적용하여, $Si_{0.9}-Ge_{0.1}$ NW 내 포논 MFP 스펙트럼 분포를 구하고, 주파수에 따른 포논 전달특성을 살폈다. 이를 바탕으로 $Si_{0.9}-Ge_{0.1}$ NW 단위길이당 포논-표면 산란율을 제시하여, 가로갈래 포논 주파수 의존성을 살폈다. 본 연구에서 제시한 모델은 향후 나노재료의 공학적 응용을 위한 나노구조물 열전달 해석모델 개발 및 나노재료 열전달 특성 조정(tailoring)을 위한 나노재료 최적설계에 활용될 수 있다.

In this study, we present a model that can be used to calculate the phonon-surface scattering rate directly from the experimental data on phonon mean free path (MFP) spectra of nanostructures. Using this model and the recently reported length-dependent thermal conductivity measurements on $Si_{0.9}Ge_{0.1}$ nanowires (NWs), we investigate the spectral reduced MFP distribution and the spectral phonon-surface scattering rate in the $Si_{0.9}Ge_{0.1}$ NWs. From the results, it is found that the phonon transport properties with the material and the phonon frequency dependency of the spectral phonon-surface scattering rate per unit length of the NW. The model presented in this study can be used for developing heat transfer analysis models of nanomaterials, and for determining the optimum design for tailoring the heat transfer characteristics of nanomaterials for future applications of phonon nanoengineering.

키워드

참고문헌

  1. Tien, C. L., Majumdar, A. and Gerner, F. M., 1998, MICROSCALE ENERGY TRANSPORT, Taylor & Francis, Washington D. C., pp. 3-94.
  2. Zhang, Z. M., 2007, Nano/Microscale Heat Transfer, Mc Graw Hill, New York, pp. 162-182.
  3. Kim, W., Zide, J., Gossard, A., Klenov, D., Stemmer, S., Shakouri, A. and Majumdar, A, 2006, "Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedding Nanoparticles in Crystalline Semiconductors," Physical Review Letters, Vol. 96, No. 4, Paper Number 045901.
  4. Kim, W., 2015, "Strategies for Engineering Phonon Transport in Thermoelectrics," Journal of Materials Chemistry C, Vol. 3, No. 10, pp. 10336-10348.
  5. Park, H. J., Nah, J. H., Tutuc, E. and Seol, J. H., 2015, "Thermal Conductivity Measurement of Ge-SixGe1-x Core-Shell Nanowires Using Suspended Microdevices," Trans. Korean Soc. Mech. Eng. B, Vol. 39, No. 10, pp. 825-829. https://doi.org/10.3795/KSME-B.2015.39.10.825
  6. Li, D., Wu, Y., Kim, P., Shi, L., Yang, P. and Majumdar, A., 2003, "Thermal Conductivity of Individual Silicon Nanowires," Applied Physics Letters, Vol. 83, No. 14, pp. 2934-2936. https://doi.org/10.1063/1.1616981
  7. Hochbaum, A. I., Chen, R., Delgado, R. D., Liang, W., Garnett, E. C., Najarian, M., Majumdar, A. and Yang, P., 2008, "Enhanced Thermoelectric Performance of Rough Silicon Nanowires," Nature, Vol. 451, No. 7175, pp. 163-167. https://doi.org/10.1038/nature06381
  8. Zou, J. and Balandin, A., 2001, "Phonon Heat Conduction in a Semiconductor Nanowire," Journal of Applied Physics, Vol. 89, No. 5, pp. 2932-2938. https://doi.org/10.1063/1.1345515
  9. Lim, J., Hippalgaonkar, K., Andrews, S. C., Majumdar, A. and Yang, P., 2012, "Quantifying Surface Roughness Effects on Phonon Transport in Silicon Nanowires," Nano Letters, Vol. 12, No. 5, pp. 2475-2482. https://doi.org/10.1021/nl3005868
  10. Chen, R., Hochbaum, A. I., Murphy, P., Moore, J., Yang, P. and Majumdar, A, 2008, "Thermal Conductance of Thin Silicon Nanowires," Physical Review Letters, Vol. 101, No. 10, Paper Number 105501.
  11. Ghossoub, M. G., Valavala, K. V., Seong, M., Azeredo, B., Hsu, K., Sadhu, J. S., Singh, P. K. and Sinha, S., 2013, "Spectral Phonon Scattering from Sub-10 nm Surface Roughness Wavelengths in Metal-Assisted Chemically Etched Si Nanowires," Nano Letters, Vol. 13, No. 4, pp. 1564-1571. https://doi.org/10.1021/nl3047392
  12. Hertzberg, J. B., Aksit, M., Otelaja, O. O., Stewart, D. A. and Robinson, R. D., 2014, "Direct Measurements of Surface Scattering in Si Nanosheets Using a Microscale Phonon Spectrometer: Implications for Casimir-Limit Predicted by Ziman Theory," Nano Letters, Vol. 14, No. 2, pp. 409-415.
  13. Zhou, Y., Chen, Y. and Hu, M., 2016, "Strong Surface Orientation Dependent Thermal Transport in Si Nanowires," Scientific Report, Vol. 6, Paper Number 24903.
  14. Zianni, X. and Chantrenne, P., 2013, "Thermal Conductivity of Diameter-Modulated Silicon Nanowires Within a Frequency-Dependent Model for Phonon Boundary Scattering," Journal of Electronic Materials, Vol. 42, No. 7, pp. 1509-1513. https://doi.org/10.1007/s11664-012-2304-2
  15. Xie, G., Guo, Y., Li, B., Yang, L., Zhang, K., Tang, M. and Zhang, G., 2013, "Phonon Surface Scattering Controlled Length Dependence of Thermal Conductivity of Silicon Nanowires," Physical Chemistry Chemical Physics, Vol. 15, No. 35, pp. 14647-14652. https://doi.org/10.1039/c3cp50969a
  16. Marchbanks, C. and Wu, Z., 2015, "Reduction of Heat Capacity and Phonon Group Velocity in Silicon Nanowires," Journal of Applied Physics, Vol. 117, No. 8, Paper Number 084305.
  17. Sadhu, J. and Sinha, S., 2011, "Room-temperature Phonon Boundary Scattering Below the Casimir Limit," Physical Review B, Vol. 84, No. 11, Paper Number 115450.
  18. Feser, J. P., Sadhu, J. S., Azeredo, B. P., Hsu, K. H., Ma, J., Kim, J., Seong, M., Fang, N. X., Li, X., Ferreira, P. M., Sinha, S. and Cahill, D. G., 2012, "Thermal Conductivity of Silicon Nanowire Arrays with Controlled Roughness," Journal of Applied Physics, Vol. 112, No. 11, Paper Number 114306.
  19. Hsiao, T.-K., Chang, H.-K., Liou, S.-C., Chu, M.-W., Lee, S.-C. and Chang, C.-W., 2013, "Observation of Room Temperature Ballistic Thermal Conduction Persisting over 8.3 ${\mu}m$ in SiGe Nanowires," Nature Nanotechnology, Vol. 8, No. 7, pp. 534-538. https://doi.org/10.1038/nnano.2013.121
  20. Malhotra, A. and Maldovan, M., 2016, "Impact of Phonon Surface Scattering on Thermal Energy Distribution of Si and SiGe Nanowires," Scientific Report, Vol. 6, Paper Number 25818.
  21. Xie, G., Guo, Y., Wei, X., Zhang, K., Sun, L., Zhong, J., Zhang, G. and Zhang, Y.-W., 2014, "Phonon Mean Free Path Spectrum and Thermal Conductivity for $Si_{1-x}Ge_x$ Nanowires," Applied Physics Letters, Vol. 104, No. 23, Paper Number 233901.
  22. Yin, L., Lee, E. K., Lee, J. W., Whang, D., Choi, B. L. and Yu, C., 2012, "The Influence of Phonon Scatterings on the Thermal Conductivity of SiGe Nanowires," Applied Physics Letters, Vol. 101, No. 4, Paper Number 043114.
  23. Zhang, H., Hua, C., Ding D. and Minnich, A. J., 2015, "Length Dependent Thermal Conductivity Measurements Yield Phonon Mean Free Path Spectra in Nanostructures," Scientific Report, Vol. 5, Paper Number 9121.
  24. Narumanchi, S. V. J., Murthy, J. Y. and Amon, C. H., 2004, "Submicron Heat Transfer Model in Silicon Accounting for Phonon Dispersion and Polarization," ASME Journal of Heat Transfer, Vol. 126, No. 6, pp. 946-955. https://doi.org/10.1115/1.1833367
  25. Narumanchi, S. V. J., Murthy, J. Y. and Amon, C. H., 2005, "Comparison of Different Phonon Transport Models for Predicting Heat Conduction in Silicon-oninsulator Transistors," ASME Journal of Heat Transfer, Vol. 127, No. 7, pp. 713-723. https://doi.org/10.1115/1.1924571
  26. Kang, H.-S., Koh, Y. H. and Jin, J. S., 2016, "A Numerical Study on the Anisotropic Thermal Conduction by Phonon Mean Free Path Spectrum of Silicon in Silicon-on-Insulator Transistor," Trans. Korean Soc. Mech. Eng. B, Vol. 40, No. 2, pp. 111-117. https://doi.org/10.3795/KSME-B.2016.40.2.111
  27. Lee, J., Lim, J. and Yang, P., 2015, "Ballistic Phonon Transport in Holey Silicon," Nano Letters, Vol. 5, No. 5, pp. 3273-3279.
  28. Minnich, A. J., 2015, "Thermal Phonon Boundary Scattering in Anisotropic Thin Films," Applied Physics Letters, Vol. 107, No. 18, Paper Number 183106.
  29. Sellan, D. P., Turney, J. E., McGaughey, A. J. H. and Amon, C. H., 2010, "Cross-plane Phonon Transport in Thin Films," Journal of Applied Physics, Vol. 108, No. 11, Paper Number 113524.
  30. Brockhouse, B. N., 1959, "Lattice Vibrations in Silicon and Germanium," Physical Review Letters, Vol. 2, No. 6, pp. 256-258. https://doi.org/10.1103/PhysRevLett.2.256
  31. Majumdar, A., 1993, ''Microscale Heat Conduction in Dielectric Thin Films,'' ASME Journal of Heat Transfer, Vol. 115, No. 7, pp. 7-16. https://doi.org/10.1115/1.2910673
  32. Jain, A., Yu, Y.-J. and McGaughey, A. J. H., 2013, "Phonon Transport in Periodic Silicon Nanoporous Films with Feature Sizes Greater Than 100 nm," Physical Review B, Vol. 87, No. 19, Paper Number 195301.
  33. Minnich, A. J., Johnson, J. A., Schmidt, A. J., Esfarjani, K., Dresselhaus, M. S., Nelson, K. A. and Chen, G., 2011, "Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths," Physical Review Letters, Vol. 107, No. 9, Paper Number 095901.
  34. Minnich, A. J., 2012, "Determining Phonon Mean Free Paths from Observations of Quasiballistic Thermal Transport," Physical Review Letters, Vol. 109, No. 20, Paper Number 205901.
  35. Jin, J. S., 2014, "Prediction of Phonon and Electron Contributions to Thermal Conduction in Doped Silicon Films," Journal of Mechanical Science and Technology, Vol. 28, No. 6, pp. 2287-2292. https://doi.org/10.1007/s12206-014-0518-3
  36. Esfarjani, K. and Chen, G., 2011, "Heat Transport in Silicon from First-principles Calculations," Physical Review B, Vol. 84, No. 8, Paper Number 085204.