DOI QR코드

DOI QR Code

HSDI 엔진 성능 향상을 위한 연료분사 타겟팅에 관한 수치 해석적 연구

Numerical Study on the Fuel Spray Targeting for the Improvement of HSDI Engine Performance

  • 민세훈 (공주대학교 대학원 기계공학과) ;
  • 서현규 (공주대학교 기계자동차공학부)
  • Min, Se Hun (Graduate School of Mechanical Engineering, Kongju Nat'l Univ.) ;
  • Suh, Hyun Kyu (Div. of Mechanical & Automotive Engineering, Kongju Nat'l Univ.)
  • 투고 : 2016.02.11
  • 심사 : 2016.06.24
  • 발행 : 2016.09.01

초록

본 연구는 HSDI 디젤 엔진의 연소 성능 향상을 위해 연료 분사 타겟팅의 최적화를 수치 해석적으로 연구하였다. 연구에 적용된 연소모델은 ECFM-3Z모델을 사용하였고, 해석에 필요한 엔진 부하 및 연료의 타겟팅은 분사량, 분사각도, 분사시기를 변경하여 해석한 실린더압력, 열 발생률, 배기 배출물 특성의 결과를 비교 분석하여 연구하였다. 연구결과, 분사시기와 분사각도에 따라 연료가 피스톤 보울 안쪽으로 많이 유입될수록 열 발생률의 증가로 인하여 $NO_x$는 증가하였고, CO, Soot은 연소성능의 증진으로 감소하는 것을 확인할 수 있었다. 또한, 분사시기가 진각될수록 균일 혼합기 형성시간이 충분하여 연소성능이 증진되고, 실린더압력은 증가하였다.

The objective of this study was to investigate, using a numerical method, the fuel injection targeting for improving the combustion performance in a HSDI diesel engine. In this work, the ECFM-3Z model was applied as the combustion model, and the injection mass, inclined spray angle, and injection timing were varied for the study on the targeting of fuel spray. The results of this work were compared in terms of cylinder pressure, rate of heat release, and exhaust emissions characteristics. It was found that the cylinder pressure increased when the injection timing was advanced, and the rate of heat release increased when more fuel was injected into the piston bowl. In addition, $NO_x$ emission increased owing to the increase in the rate of heat release. On the other hand, CO and soot emissions decreased because of the improvement in combustion performance.

키워드

참고문헌

  1. Han, D. S., Lee, B. H., Bae, M. J., Chang, Y. J., Jeon, C. H. and Song, J. H., 2008, "A Numerical Study on the Spray Characteristics of a Marine Diesel Engine of Injection Spray Angle and Hole Diameter," Trans. Korean Soc. Mech. Eng. Spring Conference, pp. 572-577.
  2. Kang, S. H., Lee, S. W. and Eom, D. S., 2014, "The Effect of Fuel Injection Strategy on Combustion and Nano-particle Emissions in a Small Diesel Engine," Transaction of the KSAE, Vol. 22, No. 7, pp. 98-106.
  3. Roh, H. G., Jeon, H. S. and Lee, C. S., 2007, "Effect of Multiple Injection and Injection Pressure on the Combustion and Emission Characteristics in a Passenger Car CRDI Diesel Engine," Transaction of the KSAE Spring Conference, pp. 352-357.
  4. Chung, J. W., Kang, J. H., Kim, N. H. and Kang, W., 2007, "The Effects of Injection Fuel Ratio and Injection Timing on the Emission and Combustion Performances of the Partial Premixed Compression Ignition Combustion Engine Applied with the Split Injection Method," Transaction of the KSAE Spring Conference, pp. 358-363.
  5. Lee, J. W., Jung, Y. J., Jang, J. Y., Park, J. S. and Bae, C. S., 2009, "Effect of the Injector Configuration and EGR on the HCCI Combustion and Exhaust Emissions in a Heavy Duty Diesel Engine," Transaction of the KSAE Annual Conference, pp. 352-357.
  6. Su, L. W., Li, X. R., Zhang, Z. and Liu, F. S., 2014, "Numerical Analysis on the Combustion and Emission Characteristics of Forced Swirl Combustion System for DI Diesel Engines," Journal of Energy Conversion and Management, Vol. 86, pp. 20-27. https://doi.org/10.1016/j.enconman.2014.05.023
  7. Gafoor, A. and Gupta, R., 2015, "Numerical Investigation of Piston Bowl Geometry and Swirl Ratio on Emission from Diesel Engines," Journal of Energy Conversion and Management, Vol. 101, pp. 541-551. https://doi.org/10.1016/j.enconman.2015.06.007
  8. Lee, J. H. and Kim, S. J., 2002, "Modeling the Effects of Injection Conditions and Combustion Chamber Geometry on Emissions in a HSDI Diesel," Transactions of the KSAE other Publications, pp. 2337-2342.
  9. Maghbouli, A., Yang, W., An, H., Li, J. and Shafee, S., 2015, "Effects of Injection Strategies and Fuel Injector Configuration on Combustion and Emission Characteristics of a D.I. Diesel Engine Fueled by Bio-Diesel," Journal of Renewable Energy, Vol. 76, pp. 687-698. https://doi.org/10.1016/j.renene.2014.11.092
  10. Ryu, B. W., Kim, H. J., Lee, J. H. and Lee, C. S., 2008, "Prediction of the Effect of Injection Strategy on the Combustion and Emission Characteristics in a Direct Injection Diesel Engine," Transaction of the KSAE 30th Anniversary Conference, pp. 427-432.
  11. AVL List GmbH, 2012, "Fire Version 2013 ESEDiesel (Engine Simulation Environment) Module Manual".
  12. AVL GmbH, 2013, "Fire Version 2013 Combustion Module Manual".
  13. Bosch, W., 1966, "The Fuel Rate Indicator : A New Measuring Instrument for Display of the Characteristics of Individual Injection," SAE 660749.
  14. Kook, S. H., Kong, J. S., Park, S. I., Bae, C. S. and Kim, J. H., 2007, "The Effect of Injection Angle and Nozzle Diameter n HCCI Combustion," Transactions of the KSAE, Vol. 15, No. 2, pp. 1-7.
  15. Jung, Y. J., Jang, J. Y., Park, J. S., Bae, C. S. and Kim, D. S., 2011, "Reduction of Exhaust Emissions Using Various Injector Configurations in Low Temperature Diesel Combustion," Transactions of the KSAE, Vol. 19, No. 4, pp. 16-23.
  16. Ladommatos, N., Xiao, Z. and Zhao, H., 2005, "The Effect of Piston Bowl Temperature on Diesel Exhaust Emissions," Proceeding IMechE, Vol. 219, Part D: J. Automobile Engineering.
  17. Lee, S. S. and Reitz, R. D., 2006, "Spray Targeting to Minimize Soot & CO Formation in Premixed Compression Ignition (PCI) Combustion with a HSDI Diesel Engine," SAE 2006-01-0918.