• Title/Summary/Keyword: Fuel Spray Targeting

Search Result 5, Processing Time 0.025 seconds

Measurement and Prediction of Spray Targeting Points according to Injector Parameter and Injection Condition (인젝터 설계변수 및 분사조건에 따른 분무타겟팅 지점의 측정 및 예측)

  • Mengzhao Chang;Bo Zhou;Suhan Park
    • Journal of ILASS-Korea
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • In the cylinder of gasoline direct injection engines, the spray targeting from injectors is of great significance for fuel consumption and pollutant emissions. The automotive industry is putting a lot of effort into improving injector targeting accuracy. To improve the targeting accuracy of injectors, it is necessary to develop models that can predict the spray targeting positions. When developing spray targeting models, the most used technique is computational fluid dynamics (CFD). Recently, due to the superiority of machine learning in prediction accuracy, the application of machine learning in this field is also receiving constant attention. The purpose of this study is to build a machine learning model that can accurately predict spray targeting based on the design parameters of injectors. To achieve this goal, this study firstly used laser sheet beam visualization equipment to obtain many spray cross-sectional images of injectors with different parameters at different injection pressures and measurement planes. The spray images were processed by MATLAB code to get the targeting coordinates of sprays. A total of four models were used for the prediction of spray targeting coordinates, namely ANN, LSTM, Conv1D and Conv1D & LSTM. Features fed into the machine learning model include injector design parameters, injection conditions, and measurement planes. Labels to be output from the model are spray targeting coordinates. In addition, the spray data of 7 injectors were used for model training, and the spray data of the remaining one injector were used for model performance verification. Finally, the prediction performance of the model was evaluated by R2 and RMSE. It is found that the Conv1D&LSTM model has the highest accuracy in predicting the spray targeting coordinates, which can reach 98%. In addition, the prediction bias of the model becomes larger as the distance from the injector tip increases.

Numerical Study on the Fuel Spray Targeting for the Improvement of HSDI Engine Performance (HSDI 엔진 성능 향상을 위한 연료분사 타겟팅에 관한 수치 해석적 연구)

  • Min, Se Hun;Suh, Hyun Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.9
    • /
    • pp.569-576
    • /
    • 2016
  • The objective of this study was to investigate, using a numerical method, the fuel injection targeting for improving the combustion performance in a HSDI diesel engine. In this work, the ECFM-3Z model was applied as the combustion model, and the injection mass, inclined spray angle, and injection timing were varied for the study on the targeting of fuel spray. The results of this work were compared in terms of cylinder pressure, rate of heat release, and exhaust emissions characteristics. It was found that the cylinder pressure increased when the injection timing was advanced, and the rate of heat release increased when more fuel was injected into the piston bowl. In addition, $NO_x$ emission increased owing to the increase in the rate of heat release. On the other hand, CO and soot emissions decreased because of the improvement in combustion performance.

Characteristics of the Spray Development with Diesel Fuel Temperatures (디젤 연료 온도에 따른 분무 발달 특성)

  • Lee, Jin-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.270-275
    • /
    • 2016
  • The characteristics of the fuel quantity, injection rate and macro spray development was investigated under a range of diesel fuel temperatures. The actual injection quantity decreased despite the same signal of the injection start and injection duration as the fuel temperature decreased. The injection rate measurements confirmed that the actual injection commencement was delayed and the actual injection duration was shortened under lower fuel temperature conditions, which explains why the injection quantity decreased. Spray tip penetration with a lower fuel temperature was longer than that with a higher fuel temperature due to the deteriorated atomization. As a pre-test for the combustion experiment under low temperature conditions, piston targeting with pilot injection was accomplished, which showed that the fuel droplet from pilot injection was introduced into the crevice area. This suggests that the pilot injection quantity and timing should be chosen with careful consideration for actual applications.

STUDY OF CORRELATION BETWEEN WETTED FUEL FOOTPRINTS ON COMBUSTION CHAMBER WALLS AND UBHC IN ENGINE START PROCESSES

  • KIM H.;YOON S.;LAI M.-C.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.437-444
    • /
    • 2005
  • Unburned hydrocarbon (UBHC) emissions from gasoline engines remain a primary engineering research and development concern due to stricter emission regulations. Gasoline engines produce more UBHC emissions during cold start and warm-up than during any other stage of operation, because of insufficient fuel-air mixing, particularly in view of the additional fuel enrichment used for early starting. Impingement of fuel droplets on the cylinder wall is a major source of UBHC and a concern for oil dilution. This paper describes an experimental study that was carried out to investigate the distribution and 'footprint' of fuel droplets impinging on the cylinder wall during the intake stroke under engine starting conditions. Injectors having different targeting and atomization characteristics were used in a 4-Valve engine with optical access to the intake port and combustion chamber. The spray and targeting performance were characterized using high-speed visualization and Phase Doppler Interferometry techniques. The fuel droplets impinging on the port, cylinder wall and piston top were characterized using a color imaging technique during simulated engine start-up from room temperature. Highly absorbent filter paper was placed around the circumference of the cylinder liner and on the piston top to collect fuel droplets during the intake strokes. A small amount of colored dye, which dissolves completely in gasoline, was used as the tracer. Color density on the paper, which is correlated with the amount of fuel deposited and its distribution on the cylinder wall, was measured using image analysis. The results show that by comparing the locations of the wetted footprints and their color intensities, the influence of fuel injection and engine conditions can be qualitatively and quantitatively examined. Fast FID measurements of UBHC were also performed on the engine for correlation to the mixture formation results.

Effects of Pilot Injection on Low Temperature Diesel Combustion (파일럿 분사가 저온 디젤 연소에 미치는 영향)

  • Han, Sang-Wook;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.141-147
    • /
    • 2012
  • A direct injection diesel engine with large amount of exhaust gas recirculation was used to investigate low temperature diesel combustion. Pilot injection strategy was adopted in low temperature diesel combustion to reduce high carbon monoxide and hydrocarbon emissions. Combustion characteristics and exhaust emissions of low temperature diesel combustion under different pilot injection timings, pilot injection quantities and injection pressures were analyzed. Retarding pilot injection timing, increasing pilot injection quantity and higher injection pressure advanced main combustion timing and increased peak heat release rate of main combustion. As a result of these strategies, carbon monoxide and hydrocarbon emissions were reduced. Soot emission was slightly increased with retarded pilot injection timing while the effect of pilot injection on nitrogen oxides emission was negligible under low combustion temperature condition. Spatial distribution of fuel from the spray targeting visualization was also investigated to provide more insight into the reason for the reduction in carbon monoxide and hydrocarbon emissions.