DOI QR코드

DOI QR Code

가동조건 변화에 따른 순산소 마일드 연소 형성 연구

Formation of Oxy-Fuel MILD Combustion under Different Operating Conditions

  • 이필형 (인천대학교 기계시스템공학부) ;
  • 황상순 (인천대학교 기계시스템공학부)
  • Lee, Pil Hyong (Division of Mechanical System Engineering, Incheon Nat'l Univ.) ;
  • Hwang, Sang Soon (Division of Mechanical System Engineering, Incheon Nat'l Univ.)
  • 투고 : 2016.03.30
  • 심사 : 2016.07.10
  • 발행 : 2016.09.01

초록

순산소 마일드 연소는 공기를 사용하는 연소에 비하여 열효율 및 연소안정성이 높고 배기가스 배출량이 낮아 유망한 연소기술 중 하나로 알려져 있지만 마일드 화염의 형성에는 아직까지 많은 어려움이 있는 실정이다. 본 논문에서는 순산소 마일드 형성을 위하여 연소기 형상 및 운전조건 변화가 순산소 마일드 연소에 미치는 영향을 3차원 수치해석을 적용하여 분석하였다. 수치해석 결과 마일드 연소화염의 특징인 고온영역과 평균온도를 감소시키는 데 있어서 산화제유속 증가가 보다 효과적임을 확인하였다. 또한 외부 예열이 없는 조건에서도 최적화된 산소-연료 공급조건에서 순산소 마일드 연소화염의 형성 가능성을 확인하였고 안정적인 순산소 마일드 연소는 당량비 0.90, 연료유속 10 m/s, 산소유속 200 m/s, 노즐간 거리 33.5 mm 조건에서 보다 안정적으로 형성됨을 확인할 수 있었다.

Although the formation of oxy-fuel MILD combustion is considered one of the promising combustion technologies for high thermal efficiency, low emissions and stability have been reported as difficulties. In this paper, the effect of combustor geometry and operating conditions on the formation of oxy-fuel MILD combustion was analyzed using numerical simulation. The results show that the high temperature region and average temperature decreased due to an increase in oxygen inlet velocity; moreover, a high degree of temperature uniformity was achieved using an optimized combination of fuels and an oxygen injection configuration without external oxygen preheating. In particular, the oxy-fuel MILD combustion flame was found to be very stable with a combustion flame region at equivalence ratio 0.90, fuel velocity 10 m/s, oxygen velocity 200 m/s, and nozzle distance 33.5 mm.

키워드

참고문헌

  1. Jang, J. H., Cho, J. H., Kim, H. S., Lee, S. M., Kim, M. K. and Ahn, K. Y., 2013, "Study on Lean-Premixed Combustion Characteristics of Dual-Stage Burner," Trans. Korean Soc. Mech. Eng. B, Vol. 37, No. 1, pp. 51-57. https://doi.org/10.3795/KSME-B.2013.37.1.051
  2. Baek, G. M., Cho, C. H., Cho, J. H., Kim, H. S. and Sohn, C. H., 2013, "Numerical Study of Combustion Characteristics and NO Emission in Swirl Premixed Burner," Trans. Korean Soc. Mech. Eng. B, Vol. 37, No. 10, pp. 911-918. https://doi.org/10.3795/KSME-B.2013.37.10.911
  3. Mujeebu, M. A., Abdullah, M. Z., Abu Bakar, M. Z., Mohamad, A. A. and Abdullah, M. K., 2009, "Applications of Porous Media Combustion Technology," -A review, Applied Energy, Vol. 86, pp. 1365-1375. https://doi.org/10.1016/j.apenergy.2009.01.017
  4. Hong, S. W., Lee, P. H. and Hwang, S. S., 2013, "Combustion Characteristics of Flameless Combustion by Reactants Injection Conditions," J. Korean Soc. Combust., Vol. 18, No. 2, pp. 8-16. https://doi.org/10.15231/jksc.2013.18.2.008
  5. Choi, Y. K., Kang, K. T., Lim, K. S., Ko, D. W. and Kim, Y. M., 2004, "Experimental and Numerical Study of Low NOx Multi-Staged Burner in the Test Combustor," Trans. Korean Soc. Mech. Eng. B, Vol. 28, No. 11, pp. 1339-1347. https://doi.org/10.3795/KSME-B.2004.28.11.1339
  6. Choi, G. M. and Katsuki, M., 2001, "Advanced Low Nox Combustion Using Highly Preheating Air," Energy Conversion and Management, Vol. 42, pp. 639-652. https://doi.org/10.1016/S0196-8904(00)00074-1
  7. Kang, M. W., Yoon, Y. B. and Dong, S. K., 2002, "The Effect of Flue-gas Recirculation on Combustion Characteristics of Regenerative Low NOx Burner," 25th Kosco Symposium, pp. 97-104.
  8. Oh, J. and Noh, D., 2015, "Flame Characteristics of a Non-premixed Oxy-fuel Jet in a Lab-scale Furnace," Energy, Vol. 81, pp. 328-343. https://doi.org/10.1016/j.energy.2014.12.046
  9. Oh, J S. and Noh, D., 2012, "Laminar Burning Velocity of Oxy-methane Flames in Atmospheric Condition," Energy, Vol. 45, pp. 669-675. https://doi.org/10.1016/j.energy.2012.07.027
  10. Baukal, C. E., 2000, "Oxygen Enhanced Combustion," CRC Press, NewYork, pp. 13-14.
  11. Vresterburg, P. and Moroz, G., 2007, "Flameless Oxyfuel for Highly Visible Results," Iron & steel technology, Vol. 4, pp. 312-318.
  12. Leicher. J. and Giese. A., "Reduce NOx Emissions in Glass Melting Furnaces," International Journal of Thermodynamics, Vol. 16, No. 2, pp. 55-61.
  13. Li, P., Dally, B. B., Mi, J. and Wang, F., 2013 "MILD Oxy-combustion of Gaseous Fuels in a Laboratory-scale Furnace," Combustion and Flame, Vol. 160, pp. 93-946.
  14. Galletti, C., Ferrarotti, M., Parente. A. and Tognotti. L., 2015, "Reduced NO Formation Models for CFD Simulations of MILD Combustion," International Journal of Hydrogen Energy, Vol. 40, pp. 4884-4897. https://doi.org/10.1016/j.ijhydene.2015.01.172
  15. Cavaliere, A. and Joannon, D., 2004, "Mild Combustion," Progress in Energy and Combustion Science, Vol. 30, pp. 329-366. https://doi.org/10.1016/j.pecs.2004.02.003
  16. Arghode, K. and Gupta, K., 2010, "Effect of Flow Field for Colorless Distributed Combustion(CDC) for Gas Turbine Combustion," Applied Energy, Vol. 87, pp. 1631-1640. https://doi.org/10.1016/j.apenergy.2009.09.032
  17. Arghode, V. K. and Gupta, A. K., "Effect of Flow Field for Colorless Distributed Combustion (CDC) for Gas Turbine Combustion," 2010, Applied Energy, Vol. 87, pp. 1631-1640. https://doi.org/10.1016/j.apenergy.2009.09.032
  18. Tu, Y., Liu. H., Su, K., Chen, S., Liu, Z., Zheng, C. and Li, W., 2015, "Numerical Study of $H_2O$ Addition Effects on Pulverized Coal Oxy-MILD Combustion," Fuel Processing Technology, Vol. 138, pp. 252-262. https://doi.org/10.1016/j.fuproc.2015.05.031
  19. Fluent 13.0 User's Guide. ANSYS, Inc..
  20. Mi, J., Li, P. and Zheng, C., 2010, "Numerical Simulation of Flameless Premixed Combustion with an Annular Nozzle in a Recuperative Furnace," Fluid Flow and Transport Phenomena, Vol. 18, No. 1, pp. 10-17.
  21. Hosseini, S. E. and Wahid, M. A., 2014, "Investigation of Bluff-body Micro-flameless Combustion," Energy Conversion and Management, Vol. 88, pp. 120-128. https://doi.org/10.1016/j.enconman.2014.08.023
  22. Parente, A., Galletti, C. and Tognotti, L., 2008, "Effect of the Combustion Model and Kinetic Mechanism on the MILD Combustion in an Industrial Burner Fed with Hydrogen Enriched Fuels'," International Journal of Hydrogen Energy, Vol. 33, pp. 7553-7564. https://doi.org/10.1016/j.ijhydene.2008.09.058
  23. Frassoldati, A., Sharma, P., Cuoci, A., Faravelli, T. and Ranzi, E., 2010, "Kinetic and Fluid Dynamics Modeling of Methane/Hydrogen Jet Flames in Diluted Coflow," Appl Therm Eng, Vol. 30, pp. 376-383. https://doi.org/10.1016/j.applthermaleng.2009.10.001
  24. De, A., Oldenhof, E., Sathiah, P. and Roekaerts, D., 2011, "Numerical Simulation of Delft Jet in Hot Coflow(DJHC) Flames using the Eddy Dissipation Concept Model for Turbulence-chemistry Interaction," Flow, Turbulence and Combustion, Vol. 87, No. 4, pp. 537-567. https://doi.org/10.1007/s10494-011-9337-0
  25. http://combustion.berkeley.edu/gri_mech/
  26. Khalil, E. and Gupta, K., 2011, “Swirling Distributed Combustion for Clean Energy Conversion in Gas Turbine Applications,” Applied Energy, Vol. 88, pp. 3685-3693. https://doi.org/10.1016/j.apenergy.2011.03.048