• Title/Summary/Keyword: ECFM-3Z Combustion Model

Search Result 2, Processing Time 0.017 seconds

Numerical Study on the Fuel Spray Targeting for the Improvement of HSDI Engine Performance (HSDI 엔진 성능 향상을 위한 연료분사 타겟팅에 관한 수치 해석적 연구)

  • Min, Se Hun;Suh, Hyun Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.9
    • /
    • pp.569-576
    • /
    • 2016
  • The objective of this study was to investigate, using a numerical method, the fuel injection targeting for improving the combustion performance in a HSDI diesel engine. In this work, the ECFM-3Z model was applied as the combustion model, and the injection mass, inclined spray angle, and injection timing were varied for the study on the targeting of fuel spray. The results of this work were compared in terms of cylinder pressure, rate of heat release, and exhaust emissions characteristics. It was found that the cylinder pressure increased when the injection timing was advanced, and the rate of heat release increased when more fuel was injected into the piston bowl. In addition, $NO_x$ emission increased owing to the increase in the rate of heat release. On the other hand, CO and soot emissions decreased because of the improvement in combustion performance.

Numerical Study on the Effect of Nozzle Geometry on the Small CRDI Engine Performance (노즐 형상 변경이 소형 CRDI 엔진의 성능에 미치는 영향에 대한 수치 해석적 연구)

  • Min, Se Hun;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.20 no.4
    • /
    • pp.254-260
    • /
    • 2015
  • The objective of this study is to investigate the effect of multi-hole nozzle on the performance of small CRDI engine. Combustion and exhaust emission characteristics of engine were studied by using CFD simulation with ECFM-3Z combustion model. The conditions of simulation were varied with nozzle geometry, injection timing and injection quantity. In addition, the results were compared in terms of combustion pressure, rate of heat release, $NO_x$ and soot emissions. It was found that combustion pressure was increased when injection timing was advanced. The rate of heat release of 6 hole nozzle was higher than that of 12 hole nozzle since the quantity of fuel impinged at the bottom of piston rim was different under different injection timing conditions. In the case of $NO_x$ emission, 6 hole nozzle generated more $NO_x$ emission than 12 hole nozzle. On the other hand, in the case of soot emission, 12 hole nozzle showed higher value than 6 hole nozzle because injected fuel droplets from multi-hole nozzle were coalesced.