DOI QR코드

DOI QR Code

Effect of Cementitious Composite on the Thermal and Mechanical Properties of Fiber-Reinforced Mortars for Thermal Energy Storage

열에너지 저장을 위한 시멘트 복합재료의 섬유보강 모르타르의 열역학 특성에 관한 영향

  • Received : 2015.10.13
  • Accepted : 2016.05.16
  • Published : 2016.08.31

Abstract

The thermal and mechanical properties of fiber-reinforced mortars for thermal energy storage were investigated in this paper. The effect of the combination of different cementitious composite on the thermal and mechanical characteristics of fiber-reinforced mortars was investigated. Experiments were performed to measure mechanical properties including compressive strength before and after thermal cycling and split tensile strength, and to measure thermal properties including thermal conductivity and specific heat. The results showed that the residual compressive strength of mixtures with OPC and graphite was greatest among the mixtures. Thermal conductivity of mixtures with alumina cement was greater than that of mixtures with OPC, indicating favor of alumina cement for charging and discharging in thermal energy storage system. The addition of zirconium into alumina cement increased specific heat of mixtures. Test results of this study could be used to provide information of material properties for thermal energy storage concrete.

이 연구에서는 태양열 에너지 저장용도로 사용하기 위한 섬유보강 모르타르의 열적 및 역학적 특성을 파악하였다. 다양한 시멘트 복합재료의 배합이 섬유보강 모르타르의 열적 및 역학적 특성에 미치는 영향을 파악하기 위한 실험연구를 수행하였다. 섬유보강 모르타르의 역학적 특성으로서 열싸이클 전과 후의 압축강도 및 인장강도를 측정하였다. 또한, 섬유보강 모르타르의 열적 특성으로서 열전도율과 비열을 측정하였다. OPC와 그라파이트를 포함한 배합의 잔류압축강도가 가장 크게 나타난다. 알루미나 시멘트를 혼합한 배합의 비열이 크게 나타나며, 이는 알루미나시멘트가 열저장 시스템의 효율적인 축열과 방열에 유리함을 의미한다. 또한, 그라파이트의 첨가는 섬유보강 복합재료의 비열을 증가시킨다. 실험연구결과는 콘크리트를 $450^{\circ}C$ 이상의 열저장 매체로 활용하기 위한 프로토타입 시스템 설계에 실제적인 기초자료로 활용될 수 있을 것으로 사료된다.

Keywords

References

  1. Faas, S. E., "10 MWe Solar Thermal Central Receiver Pilot Plant: Thermal Storage Subsystem Evaluation, Subsystem Activation and Controls Testing Phase," SAND 83-8015, Sandia National Laboratories, Albuquerque, NM, 1983.
  2. Kolb, G. L., Hassani, V., "Performance Analysis of Thermocline Energy Storage Proposed for the 1 MW Saguaro Solar Trough Plant", Proceedings of ISEC ASME International Solar Energy Conference, Denver, CO, 2006.
  3. John, E., Hale, M., and Selvam. P., "Concrete as a Thermal Energy Storage Medium for Thermocline Solar Energy Storage Systems," Solar Energy, Vol.96, 2013, pp.194-204. https://doi.org/10.1016/j.solener.2013.06.033
  4. Laing, D., Lehmann, D., and Bahl, C., "Concrete Storage for Solar Thermal Power Plants and Industrial Process Heat," Proceedings of the Third International Renewable Energy Storage Conference, Germany, Berlin, 2008, pp.1-6.
  5. Laing, D., Steinmann W.D., Tamme., and Richter, C., "Solid Media Thermal Storage for Parabolic Trough Power Plants," Solar Energy, Vol.80, 2006, pp.1283-1289. https://doi.org/10.1016/j.solener.2006.06.003
  6. Laing, D., Steinmann, W.D., Viebahn, P., Grater, F., and Bahl, C., "Economic Analysis and Life Cycle Assessment of Concrete Thermal Energy Storage for Parabolic Trough Power Plants," Journal of Solar Energy Engineering, Vol. 132, 2010, 041013-1-6. https://doi.org/10.1115/1.4001404
  7. Laing, D., Steinmann, W.D., Tamme, R., Worner, A., and Zunft, S., "Advances in Thermal Energy Storage Development at The German Aerospace Center (DLR)," Energy Storage Science and Technology, Vol.1, No.1, 2012, pp.13-25.
  8. Skinner, J.E., Brown, B.M., and Selvam, R.P., "Testing of High Performance Concrete as A Thermal Energy Storage Medium at High Temperatures," Proceedings of the ASME 2011 5th International Conference on Energy Sustainability, Washington, DC, USA, 2011, pp.1-6.
  9. Strasser, M.N., and Selvam, R.P., "A Cost and Performance Comparison of Packed Bed and Structured Thermocline Thermal Energy Storage Systems," Solar Energy, Vol.108, 2014, pp.390-402. https://doi.org/10.1016/j.solener.2014.07.023
  10. Yuan, H.W., Lu, C.H., Xu, Z.Z., Ni, Y.R., and Lan, X.H., "Mechanical and Thermal Properties of Cement Composite Graphite for Solar Thermal Storage Materials," Solar Energy, Vol.86, 2012, pp.3227-3233. https://doi.org/10.1016/j.solener.2012.08.011
  11. Fernandez, A.I., Martinez, M., Segarra, M., Martorell, I., and Cabeza, L.F., "Selections of Materials with Potential in Sensible Thermal Energy Storage," Solar Energy Materials & Solar Cells, Vol.94, 2010, pp.1723-1729. https://doi.org/10.1016/j.solmat.2010.05.035
  12. Yang, I. H., and Kim, K. C. "Mechanical and Thermal Characteristics of Cement-Based Composite for Solar Thermal Energy Storage System," Journal of the Korea Institute for Structural Maintenance and Inspection, Vol.20, No.4, July 2016, pp.9-18. https://doi.org/10.11112/jksmi.2016.20.4.009
  13. Pacheco, J. E., Showalter, S. K., and Kolb, W. J., "Solar Energy: The Power to Choose '01: Development of a Molten-Salt Thermocline Thermal Storage System for Parabolic Trough Plants," Proceedings of Solar Forum, Washington, DC., 2002.
  14. Lee, C. Y., Shim J. W., Ahn, T. S., and Lim, C. "Evaluation of Fire-Resistant Performance for Polypropylene Fiber-Mixed Mortar," Proceedings of Korea Concrete Institute, November, 2006, pp.473-476.
  15. Jang, C. I., Kim, J. M., Kang, H. B., Yoon, Y. N., Kim, W. Y., and Won, J. P. "Evaluation of Thermal Effect for PP Fiber Reinforced Lightweight Aggregate Polymer Mortar," Proceedings of Korea Concrete Institute, November, 2009, pp.215-216.
  16. Han, C. G., Yang, S. H., Lee, B. Y., and Hwang, Y. S., "A Study on the Spalling Properties of High-Performance Concrete with the Kinds of Aggregate and Polypropylene Fiber Contents," Journal of Korea Concrete Institute, Vol. 11, No.5, 1999, pp.69-77.
  17. Hannant, D.J., "Durability of Polypropylene Fibers in Portland Cement-Based Composites: eighteen years of data," Cement and Concrete Research, Vol.28, No.12, 1998, pp.1809-1817. https://doi.org/10.1016/S0008-8846(98)00155-0
  18. Bilodeau, A., Kodur, V.R., and Hoff, G.C., "Optimization of The Type and Amount of Polypropylene Fibers for Preventing the Spalling of Lightweight Concrete Subjected to Hydrocarbon Fire," Cement Concrete Composite Journal, Vol.26, No.2, 2004, pp.163-175. https://doi.org/10.1016/S0958-9465(03)00085-4
  19. Suhaendi, S.L., Horiguchi, T., and Shimura, K., "Effect of Polypropylene Fiber Geometry on Explosive Spalling Mitigation in High Strength Concrete Under Elevated Temperature Conditions," Proceedings of International Conference, Concrete for Fire Engineering, Vol.08, 2008, pp.149-156.
  20. Neville, A. M., Properties of concrete (4th ed.). Addison Wesley Longman Limited., 1995.