Abstract
A multi-step deposition process for the gap-filling of submicrometer trenches using dimethyldimethoxysilane (DMDMOS), $(CH_3)_2Si(OCH_3)_2$, and $C_xH_yO_z$ by plasma enhanced chemical vapor deposition (PECVD) is presented. The multi-step process consisted of pre-treatment, deposition, and post-treatment in each deposition step. We obtained low-k films with superior gap-filling properties on the trench patterns without voids or delamination. The newly developed technique for the gap-filling of submicrometer features will have a great impact on inter metal dielectric (IMD) and shallow trench isolation (STI) processes for the next generation of microelectronic devices. Moreover, this bottom up gap-fill mode is expected to be universally for other chemical vapor deposition systems.