DOI QR코드

DOI QR Code

Hybrid UV Lithography for 3D High-Aspect-Ratio Microstructures

하이브리드 자외선 노광법을 이용한 3차원 고종횡비 미소구조물 제작

  • Received : 2016.03.04
  • Accepted : 2016.06.23
  • Published : 2016.08.01

Abstract

Three-dimensional (3D) high-aspect-ratio (HAR) microstructures for biomedical applications (e.g., microneedle, microadhesive, etc.) are microfabricated using the hybrid ultraviolet (UV) lithography in which inclined, rotational, and reverse-side UV exposure processes are combined together. The inclined and rotational UV exposure processes are intended to fabricate tapered axisymmetric HAR microstructures; the reverse-side UV exposure process is designed to sharpen the end tip of the microstructures by suppressing the UV reflection on a bottom substrate which is inevitable in conventional UV lithography. Hybrid UV lithography involves fabricating 3D HAR microstructures with an epoxy-based negative photoresist, SU-8, using our customized UV exposure system. The effects of hybrid UV lithography parameters on the geometry of the 3D HAR microstructures (aspect ratio, radius of curvature of the end tip, etc.) are measured. The dependence of the end-tip shape on SU-8 soft-baking condition is also discussed.

본 연구에서는 의용생체공학에 널리 사용되는 미소바늘과 같은 3차원 고종횡비 미소구조물을 용이하게 제작할 수 있는 하이브리드 자외선 노광법에 대해 기술한다. 하이브리드 자외선 노광법은 기존에 사용되고 있는 경사노광, 회전노광 및 역노광을 혼합한 방법으로, 경사 및 회전노광은 경사진 축대칭 형상을 가지는 3차원 미소구조물의 제작이 가능하도록 하고 역노광은 자외선 노광공정 중 필연적으로 발생하는 하부기판에서의 자외선 반사를 최소화 시킨다. 자체 개발한 자외선 노광시스템과 SU-8 음성감광제를 이용하여 하이브리드 자외선 노광법의 다양한 공정조건이 최종 제작된 3차원 고종횡비 미소구조물 형상(종횡비, 선단의 곡률반경 등)에 미치는 효과를 확인한다. 또한 SU-8의 소프트 베이킹(soft baking) 조건과 미소구조물 선단 형상 사이의 관계에 대해서도 논의한다.

Keywords

References

  1. Barber, R. L., Ghantasala, M. K., Divan, R., Vora, K. D., Harvey, E. C. and Mancini, D. C., 2005, "Optimisation of SU-8 Processing Parameters for Deep X-ray Lithography," Microsys. Technol., Vol. 11, pp. 303-310. https://doi.org/10.1007/s00542-004-0442-z
  2. Park, J. H., Allen, M. G. and Prausnitz, M. R., 2005, "Biodegradable Polymer Microneedles: Fabrication, Mechanics and Transdermal Drug Delivery," J. Control. Release, Vol. 104, pp. 51-66. https://doi.org/10.1016/j.jconrel.2005.02.002
  3. Behrmann, G. P. and Duignan, M. T., 1997, "Excimer Laser Micromachining for Rapid Fabrication of Diffractive Optical Elements," Appl. Opt., Vol. 36, pp. 4666-4676. https://doi.org/10.1364/AO.36.004666
  4. Yoon, Y. K., Park, J. H. and Allen, M. G., 2006, "Multidirectional UV Lithography for Complex 3-D MEMS Structures," J. Microelectromech. Syst., Vol. 15, pp. 1121-1130. https://doi.org/10.1109/JMEMS.2006.879669
  5. Park, J. H. and Prausnitz, M. R., 2010, "Analysis of Mechanical Failure of Polymer Microneedles by Axial Force," J. Korean Phys. Soc., Vol. 56, No. 4, pp. 1223-1227. https://doi.org/10.3938/jkps.56.1223
  6. Dill, F. H., Hornberger, W. P., Hauge, P. S. and Shaw, J. M., 1975, "Characterization of Positive Photoresist," IEEE Trans. on Electron Devices, Vol. ED-22, No. 7, pp. 445-452.
  7. William, J. D. and Wang, W., 2004, "Study on the Postbaking Process and the Effects on UV Lithography of High Aspect Ratio SU-8 Microstructures," J. Microlithogr. Microfabr. Microsyst., Vol. 3, No. 4, pp. 563-568. https://doi.org/10.1117/1.1792650
  8. Lin, C.-H., Yeh, W.-T., Chan, C.-H. and Lin, C.-C., 2012, "Influence of Graphene Oxide on Metal-insulator Semiconductor Tunneling Diodes," Nanoscale Res. Lett., Vol. 7, No. 1, p. 343. https://doi.org/10.1186/1556-276X-7-343
  9. Campo, A. D. and Greiner, C., 2007, "SU-8: a Photoresist for High-aspect-ratio and 3D Submicron Lithography," J. Micromech. Microeng, Vol. 17, pp. R81-R95. https://doi.org/10.1088/0960-1317/17/6/R01
  10. Liu, G., Tian, Y. and Kan, Y., 2005, "Fabrication of High-aspect-ratio Microstructures Using SU-8 Photoresist," Microsys. Technol., Vol. 11, pp. 343-346. https://doi.org/10.1007/s00542-004-0452-x
  11. Becnel, C., Desta, Y. and Kelly, K., 2005, "Ultradeep X-ray Lithography of Densely Packed SU-8 Features: I. An SU-8 Casting Procedure to Obtain Uniform Solvent Content with Accompanying Experimental Results," J. Micromech. Microeng, Vol. 15, pp. 1242-1248. https://doi.org/10.1088/0960-1317/15/6/015
  12. https://www.microchem.com