DOI QR코드

DOI QR Code

Assessment of Validation Method for Bioactive Contents of Fermented Soybean Extracts by Bioconversion and Their Antioxidant Activities

생물전환된 품종별 대두 발효물의 주요 지표성분 함량 및 분석법 검증과 항산화 활성 평가

  • Jung, Tae-Dong (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Shin, Gi-Hae (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Kim, Jae-Min (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Oh, Ji-Won (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Choi, Sun-Il (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Lee, Jin-Ha (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Lee, Sang Jong (STR Biotech Co., LTD.) ;
  • Heo, In Young (STR Biotech Co., LTD.) ;
  • Park, Seon Ju (STR Biotech Co., LTD.) ;
  • Kim, Hyun Tae (Department of Functional Crop, National Institute of Crop Science, RDA) ;
  • Kang, Beom Kyu (Department of Functional Crop, National Institute of Crop Science, RDA) ;
  • Lee, Ok-Hwan (Department of Food Science and Biotechnology, Kangwon National University)
  • 정태동 (강원대학교 식품생명공학과) ;
  • 신기해 (강원대학교 식품생명공학과) ;
  • 김재민 (강원대학교 식품생명공학과) ;
  • 오지원 (강원대학교 식품생명공학과) ;
  • 최선일 (강원대학교 식품생명공학과) ;
  • 이진하 (강원대학교 식품생명공학과) ;
  • 이상종 ((주)에스티알바이오텍) ;
  • 허인영 ((주)에스티알바이오텍) ;
  • 박선주 ((주)에스티알바이오텍) ;
  • 김현태 (국립식량과학원 기능성작물부 두류유지작물과) ;
  • 강범규 (국립식량과학원 기능성작물부 두류유지작물과) ;
  • 이옥환 (강원대학교 식품생명공학과)
  • Received : 2016.01.07
  • Accepted : 2016.02.11
  • Published : 2016.05.31

Abstract

The present study evaluated the validation method for isoflavone contents of fermented soybean extracts by bioconversion as well as their antioxidant activities. Our results show that the total isoflavone contents of non-fermented and fermented soybean extract ranged between 119.8 to $637.7{\mu}g/g$ and between 567.3 to $2,074.6{\mu}g/g$, respectively. Moreover, fermented soybean extracts had higher contents of isoflavone aglycones, including daidzein, glycitein, and genistein than non-fermented soybean extracts as well as lower contents of isoflavone glucosides such as daidzin, glycitin, and genistin. FRAP and ORAC values ranged between 0.15 to 0.22 and between 195.24 to $753.79{\mu}M$ Trolox equivalents/g in non-fermented and fermented soybean extracts, respectively. These results indicate that fermented soybean extracts had higher total isoflavone contents and antioxidant activities than non-fermented soybean extracts. Bioconversion process in this study may have the potential to produce isoflavone-enriched natural antioxidant agents with high added value from soybean matrices.

본 연구에서는 생물전환에 의한 품종별 대두 5종의 isoflavone 함량, 총페놀 함량, 항산화능 및 isoflavone의 분석법 검증을 시행하였다. HPLC를 이용한 분석법 검증 결과 isoflavone 6종의 표준용액과 우람(S-3) 비발효 및 발효 추출물의 retention time이 일치하는 것을 확인하였으며, spectrum 분석 결과에서도 같은 spectrum을 보여 특이성을 확인하였다. 직선성 확인 결과 isoflavone 6종의 검량선의 상관계수 값은 0.9998~1.0000으로 나타나 우수한 직선성을 보여주었다. 정밀성 측정 결과 일내 정밀도에서 0.22~0.88%, 일간 정밀도에서 0.34~1.00%의 높은 정밀도를 나타냈다. 회수율 측정 결과 daidzin은 100.55~110.21%, glycitin은 100.26~112.35%, genistin은 97.67~111.89%, daidzein은 100.95~110.43%, glycitein은 98.56~106.02%, genistein은 101.29~110.25%의 회수율을 나타내었다. Daidzin, glycitin, genistin의 검출한계는 각각 0.14, 0.16, $0.20{\mu}g/mL$로 측정되었으며, daidzein, glycitein, genistein의 검출한계는 각각 0.25, 0.29, $0.20{\mu}g/mL$로 나타났다. Daidzin, glycitin, genistin의 정량한계는 각각 0.44, 0.48, $0.60{\mu}g/mL$를 나타냈고 daidzein, glycitein, genistein은 각각 0.75, 0.89, $0.61{\mu}g/mL$로 나타났다. 생물전환에 의한 대두 발효 시 배당체인 daidzin, glycitin, genistein이 모두 비배당체인 daidzein, glycitein, genistein으로 전환됨을 확인할 수 있었다. 각각의 isoflavone을 합한 값인 total isoflavone 함량은 대두 우람(S-3) 발효물에서 $2,074.6{\mu}g/g$으로 가장 높은 함량을 나타냈으며 비발효 대두 새단백(S-5)에서 가장 낮은 $119.8{\mu}g/g$의 total isoflavone 함량을 나타내었다. 총페놀 함량은 진풍(S-4) 비발효물이 44.96 mg GAE/g으로 가장 높은 총페놀 함량을 보였다. 항산화능 측정 결과 FRAP는 대풍2(S-2) 발효물에서 0.22로 가장 높은 값을 나타냈으며 새단백(S-5) 비발효물에서 0.15로 가장 낮은 값을 나타내었다. ORAC 지수도 FRAP와 유사하게 새단백(S-5) 비발효물에서 $195.24{\pm}3.08{\mu}M\;TE/g$으로 가장 낮은 값을 보였으며 대풍 2(S-2) 발효물에서 $753.79{\pm}6.95{\mu}M\;TE/g$으로 가장 높은 값을 나타내었다.

Keywords

References

  1. Samak G, Shenoy RP, Manjunatha SM, Vinayak KS. 2009. Superoxide and hydroxyl radical scavenging actions of botanical extracts of Wagatea spicata. Food Chem 115: 631-634. https://doi.org/10.1016/j.foodchem.2008.12.078
  2. Aruoma OI. 1998. Free radicals, oxidative stress, and antioxidants in human health and disease. JAOCS 75: 199-212. https://doi.org/10.1007/s11746-998-0032-9
  3. Ito N, Hirose M, Fukushima S, Tsuda H, Shirai T, Tatematsu M. 1986. Studies on antioxidants: Their carcinogenic and modifying effects on chemical carcinogenesis. Food Chem Toxicol 24: 1071-1082. https://doi.org/10.1016/0278-6915(86)90291-7
  4. Packer L, Hiramatsu M, Yoshikawa T. 1999. Antioxidant food supplements in human health. Academic Press, New York, NY, USA.
  5. Setchell KD. 1998. Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones. Am J Clin Nutr 68: 13335-13465.
  6. Wang H, Murphy PA. 1994. Isoflavone composition of American and Japanese soybeans in Iowa: effects of variety, crop year, and location. J Agric Food Chem 42: 1674-1677. https://doi.org/10.1021/jf00044a017
  7. Jenkins DJA, Kendall CWC, Connelly PW, Jackson CJC, Parker T, Faulkner D, Vidgen E. 2002. Effects of high- and low-isoflavone (phytoestrogen) soy foods on inflammatory biomarkers and proinflammatory cytokines in middle-aged men and women. Metabolism 51: 919-924. https://doi.org/10.1053/meta.2002.33352
  8. Lee CH, Yang L, Xu JZ, Yeung SYV, Huang Y, Chen ZY. 2005. Relative antioxidant activity of soybean isoflavones and their glycosides. Food Chem 90: 735-741. https://doi.org/10.1016/j.foodchem.2004.04.034
  9. Khan SA, Chatterton RT, Michel N, Bryk M, Lee O, Ivancic D, Heinz R, Zalles CM, Helenowski IB, Jovanovic BD, Franke AA, Bosland MC, Wang J, Hansen NM, Bethke KP, Dew A, Coomes M, Bergan RC. 2012. Soy isoflavone supplementation for breast cancer risk reduction: a randomized phase II trial. Cancer Prev Res (Phila) 5: 309-319. https://doi.org/10.1158/1940-6207.CAPR-11-0251
  10. Nam EY, Kim DI, Choi MS, Kim HJ. 2015. Effects of fermented soybean on body weight, body fat and serum lipid in obese women. J Korean Obstet Gynecol 28: 58-72. https://doi.org/10.15204/jkobgy.2015.28.1.058
  11. Taku K, Melby MK, Nishi N, Omori T, Kurzer MS. 2011. Soy isoflavones for osteoporosis: An evidence-based approach. Maturitas 70: 333-338. https://doi.org/10.1016/j.maturitas.2011.09.001
  12. Oh JW, Lee JH, Cho ML, Shin GH, Kim JM, Choi SI, Jung TD, Kim YH, Lee SJ, Lee BJ, Park SJ, Lee OH. 2015. Development and validation of analytical method for pectolinarin and pectolinarigenin in fermented Cirsium setidens Nakai by bioconversion. J Korean Soc Food Sci Nutr 44: 1504-1509. https://doi.org/10.3746/jkfn.2015.44.10.1504
  13. Cho YH, Cho JS, Lee GW. 2011. Antioxidant activity of wood vinegar by bioconversion. J Korea Acad Ind Coop Soc 12: 4434-4442.
  14. Kim YH, Bae DB, Park SO, Lee SJ, Cho OH, Lee OH. 2013. Method validation for the determination of eleutherosides and ${\beta}$-glucan in Acanthopanax koreanum. J Korean Soc Food Sci Nutr 42: 1419-1425. https://doi.org/10.3746/jkfn.2013.42.9.1419
  15. KFDA. 2008. Guideline for standard of health functional food. Korea Food & Drug Administration, Seoul, Korea. p 1-146.
  16. KFDA. 2013. Health Functional Food Code. Korea Food & Drug Administration, Seoul, Korea. p 340-343.
  17. KFDA. 2012. Analytical method guideline about validation of drugs and etc. Korea Food & Drug Administration, Osong, Korea. p 1-26.
  18. Kaur C, Kapoor HC. 2002. Anti-oxidant activity and total phenolic content of some Asian vegetables. Int J Food Sci Technol 37: 153-161. https://doi.org/10.1046/j.1365-2621.2002.00552.x
  19. Benzie IFF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Anal Biochem 239: 70-76. https://doi.org/10.1006/abio.1996.0292
  20. Zulueta A, Esteve MJ, Frigola A. 2009. ORAC and TEAC assays comparison to measure the antioxidant capacity of food products. Food Chem 114: 310-316. https://doi.org/10.1016/j.foodchem.2008.09.033
  21. Kim IB, Shin S, Lim BL, Seong GS, Lee YE. 2010. Bioconversion of soybean isoflavone by Lactobacillus plantarum and Bifidobacterium longum. Korean J Food Cook Sci 26: 214-219.
  22. Na EJ, Moon JS. 2015. Studies on the biological activities of the bioconversioned soybean extracts. J Kor Soc Cosm 21: 82-92.
  23. Kudou S, Fleury Y, Welti D, Magnolato D, Uchida T, Kitamura K, Okubo K. 1991. Malonyl isoflavone glycosides in soybean seeds (Glycine max Merrill). Agric Biol Chem 55: 2227-2233.
  24. Lim AK, Jung HK, Hong JH, Oh JS, Kwak JH, Kim YH, Kim DI. 2008. Effects of the soybean powder with rich aglycone isoflavone on lipid metabolism and antioxidative activities in hyperlipidemic rats. J Korean Soc Food Sci Nutr 37: 302-308. https://doi.org/10.3746/jkfn.2008.37.3.302
  25. Yamaki K, Kim DH, Ryu N, Kim YP, Shin KH, Ohuchi K. 2002. Effects of naturally occurring isoflavones on prostaglandin E2 production. Planta Med 68: 97-100. https://doi.org/10.1055/s-2002-20263
  26. Lee S, Lee YB, Kim HS. 2013. Analysis of the general and functional components of various soybeans. J Korean Soc Food Sci Nutr 42: 1255-1262. https://doi.org/10.3746/jkfn.2013.42.8.1255
  27. Serafini M, Maiani G, Ferro-Luzzi A. 1998. Alcohol-free red wine enhances plasma antioxidant capacity in humans. J Nutr 128: 1003-1007. https://doi.org/10.1093/jn/128.6.1003
  28. Pyo YH. 2007. Comparison of antioxidant potentials in methanolic extracts from soybean and rice fermented with Monascus sp.. Food Sci Biotechnol 16: 451-456.
  29. Lee YL, Yang JH, Mau JL. 2008. Antioxidant properties of water extracts from Monascus fermented soybeans. Food Chem 106: 1128-1137. https://doi.org/10.1016/j.foodchem.2007.07.047
  30. Huang D, Ou B, Prior RL. 2005. The chemistry behind antioxidant capacity assays. J Agric Food Chem 53: 1841-1856. https://doi.org/10.1021/jf030723c
  31. Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Prior RL. 2002. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J Agric Food Chem 50: 4437-4444. https://doi.org/10.1021/jf0201529
  32. Cha SM, Son BY, Lee JS, Baek SB, Kim SL, Ku JH, Hwang JJ, Song BH, Woo SH, Kwon YU, Kim JT. 2012. Effect of particle size on physico-chemical properties and antioxidant activity of corn silk powder. Korean J Crop Sci 57: 41-50. https://doi.org/10.7740/kjcs.2012.57.1.041
  33. Lee S, Jeong Y, Yim SB, Yu S. 2015. Antioxidant activity of Korean traditional soy sauce. J Korean Soc Food Sci Nutr 44: 1399-1406. https://doi.org/10.3746/jkfn.2015.44.9.1399
  34. Ma Y, Huang H. 2014. Characterisation and comparison of phenols, flavonoids and isoflavones of soymilk and their correlations with antioxidant activity. Int J Food Sci Technol 49: 2290-2298. https://doi.org/10.1111/ijfs.12545

Cited by

  1. Isoflavone, β-Glucan Content and Antioxidant Activity of Defatted Soybean Powder by Bioconversion with Lentinula edodes vol.31, pp.5, 2016, https://doi.org/10.13103/JFHS.2016.31.5.386
  2. Bioactive compounds and antioxidant activities of sprout soybean fermented with Irpex lacteus mycelia vol.26, pp.6, 2017, https://doi.org/10.1007/s10068-017-0231-y
  3. 국내 유통 콩 및 녹두가루 제품의 품질 특성 vol.30, pp.5, 2017, https://doi.org/10.9799/ksfan.2017.30.5.1119
  4. 발아와 볶음처리에 따른 콩가루 품질 및 이화학 특성 vol.50, pp.2, 2018, https://doi.org/10.9721/kjfst.2018.50.2.143
  5. 콩 품종에 따른 발효물의 아미노산과 향기성분 특성 vol.32, pp.5, 2016, https://doi.org/10.9799/ksfan.2019.32.5.434
  6. Quality Change of Fermented Soybean Products by Aspergillus spp. from Soybean Cultivar vol.23, pp.4, 2016, https://doi.org/10.13050/foodengprog.2019.23.4.258
  7. 전북지역 전통 된장의 품질특성 및 항산화 활성 vol.32, pp.6, 2016, https://doi.org/10.9799/ksfan.2019.32.6.598
  8. Aspergillus속 균주를 이용한 콩 발효물의 이화학적 특성 vol.33, pp.3, 2016, https://doi.org/10.9799/ksfan.2020.33.3.279
  9. 검은콩 첨가 비율에 따른 앙금의 품질 특성 vol.33, pp.3, 2016, https://doi.org/10.9799/ksfan.2020.33.3.299
  10. Bacillus amyloliquefaciens로 제조한 콩 발효물의 발효시간에 따른 품질 변화 vol.33, pp.4, 2016, https://doi.org/10.9799/ksfan.2020.33.4.381
  11. Analytical method validation of ellagic acid as an antioxidative marker compound of the Rubus occidentalis extract vol.28, pp.5, 2016, https://doi.org/10.11002/kjfp.2021.28.5.663