DOI QR코드

DOI QR Code

Inhibitory Effects of Spinach, Cabbage, and Onion Extracts on Growth of Cancer Cells

시금치, 양배추, 양파 추출물의 암세포 증식 억제 효과

  • Lee, Hae-Nim (Department of Companion and Laboratory Animal Science, Kongju National University) ;
  • Shin, Seong-Ah (Department of Companion and Laboratory Animal Science, Kongju National University) ;
  • Choo, Gang-Sik (Department of Companion and Laboratory Animal Science, Kongju National University) ;
  • Kim, Hyeong-Jin (Department of Companion and Laboratory Animal Science, Kongju National University) ;
  • Park, Young-Seok (Department of Companion and Laboratory Animal Science, Kongju National University) ;
  • Kim, Sang-Ki (Department of Companion and Laboratory Animal Science, Kongju National University) ;
  • Jung, Ji-Youn (Department of Companion and Laboratory Animal Science, Kongju National University)
  • 이해님 (공주대학교 특수동물학과) ;
  • 신성아 (공주대학교 특수동물학과) ;
  • 추강식 (공주대학교 특수동물학과) ;
  • 김형진 (공주대학교 특수동물학과) ;
  • 박영석 (공주대학교 특수동물학과) ;
  • 김상기 (공주대학교 특수동물학과) ;
  • 정지윤 (공주대학교 특수동물학과)
  • Received : 2015.12.28
  • Accepted : 2016.02.26
  • Published : 2016.05.31

Abstract

Extracts from spinach, cabbage, and onion are known to possess various instructive characteristics, including antioxidant and anti-inflammation activities. Spinach, cabbage, and onion are consumed worldwide and represent important sources of dietary phytochemicals with proven antioxidant properties, such as flavonoids and phenolic acids. Food-derived flavonoids and phenolic compounds are expected to be promising drugs for cancer. In the present study, we investigated the effects of methanol extracts of spinach, cabbage, and onion on cell proliferation and apoptosis in human gastric and breast cancer cells. Proliferation rates of AGS, MDA-MB-231, and SK-BR-3 cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The methanol extracts of spinach, cabbage, and onion inhibited proliferation of cancer cells in a dose-dependent manner. 4',6-Diamidino-2-phenylindole (DAPI) staining revealed that chromatin condensation significantly increased compared with the control. In the results of MTT assay and DAPI staining, onion extract was the most effective in inhibiting cancer cell proliferation and apoptosis. To assess changes in protein expression level by onion extract, we identified Bax (pro-apoptotic), Bcl-2 (anti-apoptotic), and poly(ADP-ribose) polymerase (PARP) protein by western blot analysis. The expression of Bax and cleaved-PARP increased, whereas expression of Bcl-2 was decreased compared with the control. These results suggest that spinach, cabbage, and onion extracts suppressed growth of human gastric cancer AGS, human breast cancer MDA-MB-231, and SK-BR-3 cells through induction of apoptosis. Among the extracts, onion extract had stronger anti-cancer and apoptosis induction effects than spinach and cabbage extracts. Further, onion extract more effectively induced apoptosis of human gastric cancer cells than human breast cancer cells. Therefore, further studies are needed to determine the anti-cancer effects of onion extracts in vivo. Onion extract can be developed as a chemopreventive or therapeutic agent for gastric cancer.

본 연구에서는 메탄올로 추출한 시금치, 양배추, 양파 추출물의 인간 위암세포 AGS와 인간 유방암세포 MDA-MB-231, SK-BR-3 암세포에서의 세포 증식 억제 효과와 apoptosis 유도 효과에 대하여 비교 조사하였다. AGS, MDA-MB-231, SK-BR-3 암세포에 시금치, 양배추, 양파 추출물을 0, 50, 100, $200{\mu}g/mL$로 24시간 동안 처리한 뒤 MTT assay를 통하여 세포 생존율을 측정한 결과 암세포 생존율이 농도 의존적으로 감소하였다. 이러한 시금치, 양배추, 양파 추출물의 암세포 증식 억제 효과가 apoptosis에 의해 유도되는지 확인하기 위해 AGS, MDA-MB-231, SK-BR-3 암세포에 각 추출물을 0, $200{\mu}g/mL$로 24시간 동안 처리한 후 DAPI staining을 수행한 결과 apoptotic body와 염색질 응축이 추출물 처리군에서 증가하였다. MTT assay와 DAPI staining 결과 암세포 증식 억제 효과 및 apoptosis 유도효과가 가장 우수했던 양파 추출물에 의한 apoptosis 관련 단백질들의 변화 양상을 확인하기 위해 western blotting을 수행하였다. AGS, MDA-MB-231, SK-BR-3 암세포에 양파 추출물을 0, $200{\mu}g/mL$로 24시간 동안 처리한 뒤 western blotting을 수행한 결과 pro-apoptotic 인자인 Bax 발현은 증가하였으며 PARP 단백질의 분절 또한 증가한 것을 확인하였다. 반면 anti-apoptotic 인자인 Bcl-2의 발현은 감소하였다. 이러한 결과들을 종합하였을 때 시금치, 양배추, 양파 추출물은 인간 위암세포인 AGS, 인간 유방암세포인 MDA-MB-231, SK-BR-3에서 apoptosis 유도를 통해 암세포 성장을 억제하는 것으로 생각한다. 그중 양파 추출물의 효과가 가장 우수했으며 유방암세포보다 위암세포에서의 apoptosis 유도 효과가 뛰어났다. 따라서 양파의 섭취는 위암의 예방 및 치료를 위한 치료제로의 개발 가능성이 우수함을 제시하며 추후 지속적인 연구를 통하여 in vivo에서의 양파 추출물의 항암 효과에 대한 연구가 이루어져야 할 것으로 생각한다.

Keywords

References

  1. Kang HI, Kim JY, Cho HD, Park KW, Kang JS, Seo KI. 2010. Resveratrol induces apoptosis in primary human prostate cancer cells. J Korean Soc Food Sci Nutr 39: 1119-1125. https://doi.org/10.3746/jkfn.2010.39.8.1119
  2. Lee MS, Cha EY, Thuong PT, Kim JY, Ahn MS, Sul JY. 2010. Down-regulation of human epidermal growth factor receptor 2/neu oncogene by corosolic acid induces cell cycle arrest and apoptosis in NCI-N87 human gastric cancer cells. Biol Pharm Bull 33: 931-937. https://doi.org/10.1248/bpb.33.931
  3. Li N, Fan LL, Sun GP, Wan XA, Wang ZG, Wu Q, Wang H. 2010. Paeonol inhibits tumor growth in gastric cancer in vitro and in vivo. World J Gastroenterol 16: 4483-4490. https://doi.org/10.3748/wjg.v16.i35.4483
  4. Zhang L, Hou YH, Wu K, Zhai JS, Lin N. 2010. Proteomic analysis reveals molecular biological details in varioliform gastritis without Helicobacter pylori infection. World J Gastroenterol 16: 3364-3673.
  5. NCC. Annual report of cancer statistics in Korea in 2012. http://www.cancer.go.kr/ebook/104/PC/104.html (accessed Dec 2014).
  6. Dorssers LCJ, van der Flier S, Brinkman A, van Agthoven T, Veldscholte J, Berns EMJJ, Klijn JGM, Beex L, Foekens JA. 2001. Tamoxifen resistance in breast cancer. Drugs 61: 1721-1733. https://doi.org/10.2165/00003495-200161120-00004
  7. Seeram NP. 2008. Berry fruits for cancer prevention: current status and future prospects. J Agric Food Chem 56: 630-635. https://doi.org/10.1021/jf072504n
  8. Dorai T, Aggarwal BB. 2004. Role of chemopreventive agents in cancer therapy. Cancer Lett 215: 129-140. https://doi.org/10.1016/j.canlet.2004.07.013
  9. Nkondjock A, Ghadirian P. 2005. Risk factors and risk reduction of breast cancer. Med Sci (Paris) 21: 175-180. https://doi.org/10.1051/medsci/2005212175
  10. Ogimoto I, Shibata A, Fukuda K. 2000. World Cancer Research Fund/American Institute of Cancer Research 1997 Recommendations: applicability to digestive tract cancer in Japan. Cancer Causes Control 11: 9-23. https://doi.org/10.1023/A:1008927404027
  11. Block G, Patterson B, Subar A. 1992. Fruits, vegetables and cancer prevention: a review of the epidemiological evidence. Nutr Cancer 18: 1-29. https://doi.org/10.1080/01635589209514201
  12. Bravo L. 1998. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56: 317-333.
  13. Naderi GA, Asgary S, Sarraf-Zadegan N, Shirvany H. 2003. Anti-oxidant effect of flavonoids on the susceptibility of LDL oxidation. Mol Cell Biochem 246: 193-196. https://doi.org/10.1023/A:1023483223842
  14. Cragg GM, Newman DJ. 2005. Plants as a source of anticancer agents. J Ethnopharmacol 100: 72-79. https://doi.org/10.1016/j.jep.2005.05.011
  15. Kaul TN, Middleton E Jr, Ogra PL. 1985. Antiviral effect of flavonoids on human viruses. J Med Virol 15: 71-79. https://doi.org/10.1002/jmv.1890150110
  16. Hamalainen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E. 2007. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-${\kappa}B$ activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-${\kappa}B$ activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflammation 2007: 45673.
  17. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L. 2004. Polyphenols: food sources and bioavailability. Am J Clin Nutr 79: 727-747. https://doi.org/10.1093/ajcn/79.5.727
  18. Ko EY, Nile SH, Sharma K, Li GH, Park SW. 2015. Effect of different exposed lights on quercetin and quercetin glucoside content in onion (Allium cepa L.). Saudi J Biol Sci 22: 398-403. https://doi.org/10.1016/j.sjbs.2014.11.012
  19. Sultana B, Anwar F. 2008. Flavonols (kaempeferol, quercetin, myricetin) contents of selected fruits, vegetables and medicinal plants. Food Chem 108: 879-884. https://doi.org/10.1016/j.foodchem.2007.11.053
  20. Nile SH, Park SW. 2013. Total phenolics, antioxidant and xanthine oxidase inhibitory activity of three colored onions (Allium cepa L.). Front Life Sci 7: 224-228. https://doi.org/10.1080/21553769.2014.901926
  21. Lee MH, Han JS, Kozukue N, Minamide T. 2005. Physicochemical characteristics of commercial spinach produced in autumn. J East Asian Soc Dietary Life 15: 306-314.
  22. Kim NY, Yoon SK, Jang MS. 1993. Effect of blanching on the chemical properties of different kind of spinach. Korean J Soc Food Sci 9: 204-209.
  23. Lee YA, Kim HY, Cho EJ. 2005. Comparison of methanol extracts from vegetables on antioxidative effect under in vitro and cell system. J Korean Soc Food Sci Nutr 34: 1151-1156. https://doi.org/10.3746/jkfn.2005.34.8.1151
  24. Matsubara K, Matsumoto H, Mizushina Y, Mori M, Nakajima N, Fuchigami M, Yoshida H, Hada T. 2005. Inhibitory effect of glycolipids from spinach on in vitro and ex vivo angiogenesis. Oncol Rep 14: 157-160.
  25. Maeda N, Kokai Y, Ohtani S, Sahara H, Kumamoto-Yonezawa Y, Kuriyama I, Hada T, Sato N, Yoshida H, Mizushina Y. 2008. Anti-tumor effect of orally administered spinach glycolipid fraction on implanted cancer cells, colon-26, in mice. Lipids 43: 741-748. https://doi.org/10.1007/s11745-008-3202-5
  26. Jahangir M, Kim HK, Choi YH, Verpoorte R. 2009. Healthaffecting compounds in Brassicaceae. Comp Rev Food Sci Food Saf 8: 31-43. https://doi.org/10.1111/j.1541-4337.2008.00065.x
  27. Sang JP, Minchinton IR, Johnstone PK, Truscott RJW. 1984. Glucosinolate profiles in the seed, root and leaf tissue of cabbage, mustard, rapeseed, radish and swede. Can J Plant Sci 64: 77-93. https://doi.org/10.4141/cjps84-011
  28. Singh J, Upadhyay AK, Bahadur A, Singh B, Singh KP, Rai M. 2006. Antioxidant phytochemicals in cabbage (Brassica oleracea L. var. capitata). Sci Hortic 108: 233-237. https://doi.org/10.1016/j.scienta.2006.01.017
  29. Mattila P, Hellstrom J. 2007. Phenolic acids in potatoes, vegetables, and some of their products. J Food Compos Anal 20: 152-160. https://doi.org/10.1016/j.jfca.2006.05.007
  30. Hwang ES, Hong E, Kim GH. 2012. Determination of bioactive compounds and anti-cancer effect from extracts of Korean cabbage and cabbage. Korean J Food & Nutr 25: 259-265. https://doi.org/10.9799/ksfan.2012.25.2.259
  31. Hwang ES, Lee HJ. 2010. Effects of phenylethyl isothiocyanate and its metabolite on cell-cycle arrest and apoptosis in LNCaP human prostate cancer cells. Int J Food Sci Nutr 61: 324-336. https://doi.org/10.3109/09637481003639092
  32. Smith TK, Mithen R, Johnson IT. 2003. Effects of Brassica vegetable juice on the induction of apoptosis and aberrant crypt foci in rat colonic mucosal crypts in vivo. Carcinogenesis 24: 491-495. https://doi.org/10.1093/carcin/24.3.491
  33. Cho J, Bae RN, Lee SK. 2010. Current research status of postharvest technology of onion (Allium cepa L.). Kor J Hort Sci Technol 28: 522-527.
  34. Bilyk A, Cooper PL, Sapers GM. 1984. Varietal differences in distribution of quercetin and kaempferol in onion (Allium cepa L.) tissue. J Agric Food Chem 32: 274-276. https://doi.org/10.1021/jf00122a024
  35. Crozier A, Lean MEJ, McDonald MS, Black C. 1997. Quantitative analysis of the flavonoid content of commercial tomatoes, onions, lettuce, and celery. J Agric Food Chem 45: 590-595. https://doi.org/10.1021/jf960339y
  36. Patil BS, Pike LM. 1995. Distribution of quercetin content in different rings of various coloured onion (Allium cepa L.) cultivars. J Hortic Sci 70: 643-650. https://doi.org/10.1080/14620316.1995.11515338
  37. Alpsoy S, Kanter M, Aktas C, Erboga M, Akyuz A, Akkoyun DC, Oran M. 2014. Protective effects of onion extract on cadmium-induced oxidative stress, histological damage, and apoptosis in rat heart. Biol Trace Elem Res 159: 297-303. https://doi.org/10.1007/s12011-014-9968-9
  38. Ola-Mudathir KF, Maduagwu EN. 2014. Antioxidant effects of methanol extract of Allium cepa linn on cyanide-induced renal toxicity in male Wistar rats. Niger J Physiol Sci 29: 147-151.
  39. Kim J, Kim JS, Park E. 2013. Cytotoxic and anti-inflammatory effects of onion peel extract on lipopolysaccharide stimulated human colon carcinoma cells. Food Chem Toxicol 62: 199-204. https://doi.org/10.1016/j.fct.2013.08.045
  40. Elnima EI, Ahmed SA, Mekkawi AG, Mossa JS. 1983. The antimicrobial activity of garlic and onion extracts. Pharmazie 38: 747-748.
  41. Rho SN, Han JH. 2000. Cytotoxicity of garlic and onion methanol extract on human lung cancer cell lines. J Korean Soc Food Sci Nutr 29: 870-874.
  42. Yang EJ, Kim GS, Kim JA, Song KS. 2013. Protective effects of onion-derived quercetin on glutamate-mediated hippocampal neuronal cell death. Pharmacogn Mag 9: 302-308. https://doi.org/10.4103/0973-1296.117824
  43. Lee HJ, Lee KH, Park E, Chung HK. 2010. Effect of onion extracts on serum cholesterol in borderline hypercholesterolemic participants. J Korean Soc Food Sci Nutr 39: 1783-1789. https://doi.org/10.3746/jkfn.2010.39.12.1783
  44. Wang Y, Tian WX, Ma XF. 2012. Inhibitory effects of onion (Allium cepa L.) extract on proliferation of cancer cells and adipocytes via inhibiting fatty acid synthase. Asian Pac J Cancer Prev 13: 5573-5579. https://doi.org/10.7314/APJCP.2012.13.11.5573
  45. Hong YJ, Kim SY, Han J, Lim YI, Park KY. 2013. Inhibitory effects of cabbage juice and cabbage-mixed juice on the growth of AGS human gastric cancer cells and on HCl-ethanol induced gastritis in rats. J Korean Soc Food Sci Nutr 42: 682-689. https://doi.org/10.3746/jkfn.2013.42.5.682
  46. Hengartner MO. 2000. The biochemistry of apoptosis. Nature 407: 770-776. https://doi.org/10.1038/35037710
  47. Wyllie AH, Kerr JF, Currie AR. 1980. Cell death: the significance of apoptosis. Int Rev Cytol 68: 251-306. https://doi.org/10.1016/S0074-7696(08)62312-8
  48. Kim EJ, Park SY, Hong J, Shin M, Lim SS, Shin HK, Yoon JH. 2007. Inhibitory effect of the methanolic extract of Symphyocladia latiuscula on the growth of HT-29 human colon cancer cells. J Korean Soc Food Sci Nutr 36: 431-438. https://doi.org/10.3746/jkfn.2007.36.4.431
  49. Donovan M, Cotter TG. 2004. Control of mitochondrial integrity by Bcl-2 family members and caspase-independent cell death. Biochim Biophys Acta 1644: 133-147. https://doi.org/10.1016/j.bbamcr.2003.08.011
  50. Oltvai ZN, Milliman CL, Korsmeyer SJ. 1993. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death. Cell 74: 609-619. https://doi.org/10.1016/0092-8674(93)90509-O
  51. Galluzzi L, Kepp O, Trojel-Hansen C, Kroemer G. 2012. Mitochondrial control of cellular life, stress, and death. Circ Res 111: 1198-1207. https://doi.org/10.1161/CIRCRESAHA.112.268946
  52. Boulares AH, Yakovlev AG, Ivanova V, Stoica BA, Wang G, Iyer S, Smulson M. 1999. Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J Biol Chem 274: 22932-22940. https://doi.org/10.1074/jbc.274.33.22932
  53. Tewari M, Quan LT, O'Rourke K, Desnoyers S, Zeng Z, Beidler DR, Poirier GG, Salvesen GS, Dixit VM. 1995. Yama/$CPP32{\beta}$, a mammalian homolog of CED-3, is a CrmAinhibitable protease that cleaves the death substrate poly (ADP-ribose) polymerase. Cell 81: 801-809. https://doi.org/10.1016/0092-8674(95)90541-3
  54. Los M, Mozoluk M, Ferrari D, Stepczynska A, Stroh C, Renz A, Herceg Z, Wang ZQ, Schulze-Osthoff K. 2002. Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling. Mol Biol Cell 13: 978-988. https://doi.org/10.1091/mbc.01-05-0272
  55. Wiechmann L, Sampson M, Stempel M, Jacks LM, Patil SM, King T, Morrow M. 2009. Presenting features of breast cancer differ by molecular subtype. Ann Surg Oncol 16: 2705-2710. https://doi.org/10.1245/s10434-009-0606-2
  56. Shin JH, Kim HW, Lee MK, Lee SH, Lee YM, Jang HH, Hwang KA, Cho YS, Kim JB. 2014. Content and distribution of flavanols, flavonols and flavanones on the common vegetables in Korea. Korean J Environ Agric 33: 205-212. https://doi.org/10.5338/KJEA.2014.33.3.205

Cited by

  1. Effect of harvest seasons and extraction methods on the nutritional and functional components of Seomcho (Spinacia oleraecea L.) vol.25, pp.6, 2018, https://doi.org/10.11002/kjfp.2018.25.6.682
  2. 양파 수확 후 잔재물과 쇠비름 추출물이 유기농 양파의 수확량 및 품질 특성에 미치는 영향 vol.27, pp.12, 2017, https://doi.org/10.5352/jls.2017.27.12.1430
  3. Antioxidant and Cell Growth Inhibitory Effects by Leonurus sibiricus L. Extract in Human Breast Cancer MCF-7 Cells vol.29, pp.4, 2016, https://doi.org/10.7856/kjcls.2018.29.4.485
  4. Blanched 섬초(시금치) 분말을 첨가한 식빵의 품질 특성 vol.31, pp.6, 2016, https://doi.org/10.9799/ksfan.2018.31.6.873