DOI QR코드

DOI QR Code

Assessment of uncertainty associated with parameter of gumbel probability density function in rainfall frequency analysis

강우빈도해석에서 Bayesian 기법을 이용한 Gumbel 확률분포 매개변수의 불확실성 평가

  • 문장원 (서울시립대학교 공과대학 토목공학과) ;
  • 문영일 (서울시립대학교 공과대학 토목공학과) ;
  • 권현한 (전북대학교 공과대학 토목공학과)
  • Received : 2015.09.07
  • Accepted : 2016.03.16
  • Published : 2016.05.31

Abstract

Rainfall-runoff modeling in conjunction with rainfall frequency analysis has been widely used for estimating design floods in South Korea. However, uncertainties associated with underlying distribution and sampling error have not been properly addressed. This study applied a Bayesian method to quantify the uncertainties in the rainfall frequency analysis along with Gumbel distribution. For a purpose of comparison, a probability weighted moment (PWM) was employed to estimate confidence interval. The uncertainties associated with design rainfalls were quantitatively assessed using both Bayesian and PWM methods. The results showed that the uncertainty ranges with PWM are larger than those with Bayesian approach. In addition, the Bayesian approach was able to effectively represent asymmetric feature of underlying distribution; whereas the PWM resulted in symmetric confidence interval due to the normal approximation. The use of long period data provided better results leading to the reduction of uncertainty in both methods, and the Bayesian approach showed better performance in terms of the reduction of the uncertainty.

우리나라는 수공구조물 설계할 때 강우빈도해석과 강우-유출 모형으로 홍수량을 산정하여 사용하고 있다. 그러나 강우자료의 확률분포 및 자료기간 등에 따른 매개변수 추정에 많은 불확실성이 존재하나 이를 고려한 해석은 이루어지지 않고 있다. 이러한 점에서 Gumbel 분포형과 확률가중 모멘트법을 기준으로 확률강우량의 신뢰구간을 평가함과 동시에 매개변수의 불확실성을 평가하는데 있어서 우수한 성능을 발휘하는 Bayesian방법을 도입하여 서울지역의 확률강우량의 불확실성을 정량적으로 평가하였다. 두 가지 방법의 비교결과 확률가중모멘트법의 신뢰구간이 Bayesian 방법의 불확실성 구간보다 전반적으로 크게 나타났다. 신뢰구간의 경우 정규분포를 따르기 때문에 좌우대칭의 형태를 갖는 반면에 Bayesian 방법의 불확실성은 Gumbel 분포로부터 유도되어, 보다 현실적인 불확실성 평가가 가능하였다. 자료의 구간 및 기간에 따른 확률강우량의 불확실성을 평가한 결과 자료에 증가에 따른 불확실성 감소를 확인할 수 있었으며, Bayesian 방법이 자료 증가에 따른 불확실성 범위 감소가 보다 뚜렷하게 나타나는 것을 확인할 수 있었다.

Keywords

References

  1. Congdon, P. (2007). "Bayesian statistical modelling", John Wiley & Sons.
  2. Coles, S., Pericchi, L. R. and Sisson, S. (2003). "A fully probabilistic approach to extreme rainfall modeling.", Journal of Hydrology, Vol. 273, No. 1, pp. 35-50. https://doi.org/10.1016/S0022-1694(02)00353-0
  3. Coles, S. and Pericchi, L. (2003). "Anticipating catastrophes through extreme value modelling. Journal of the Royal Statistical Society: Series C (Applied Statistics)", Vol. 52, No. 4, pp. 405-416.
  4. Hamed, K. and Rao, A.R. (1999). "Flood Frequency Analysis", CRC Press,
  5. Greenwood, J. A., Landwehr, J. M., Matalas, N. C., and Wallis, J. R. (1979). "Probability weighted moments: Definition and relation to parameters of several distributions expressible in inverse form." Water Resources Research, Vol. 15, No. 5, pp. 1049-1054. https://doi.org/10.1029/WR015i005p01049
  6. Han, J. W., Kwon, H.-H. and Kim T.-W. (2009). "Reliability Evaluation of Parameter Estimation Methods of Probability Density Function for Estimating Probability Rainfalls", Journal of KOSHAM, Vol. 9, No. 6, pp. 143-151.
  7. Hong, C. S., Wone, S. Y., Ahn, J. H., Ahn, W. S. (2001). "Reliability analysis for the estimation of frequency-based rainfall", Journal of KOSHAM, Vol. 9, No. 6, pp. 143-151.
  8. Hosking, J.R.M., and Wallis, J.R. (1986a). "Paleoflood hydrology and flood frequency analysis." Water Resources Research, Vol. 22, pp, 543-550. https://doi.org/10.1029/WR022i004p00543
  9. Jung, J. H. and Yoon, Y. N. (2007). "Planning of water resource system", Goomibook, Seoul, Korea (in Korean).
  10. Kuczera, G. (1996). "Correlated rating curve error in flood frequency inference.", Water Resources Research, Vol. 32, No. 7, pp. 2119-2127. https://doi.org/10.1029/96WR00804
  11. Kim, S. U., Lee, K. S. (2008a). "At-site low flow frequency analysis using Bayesian MCMC: I. Theoretical background and construction of prior distribution", Journal of Korean Water Resources Association, Vol. 1, No. 3, pp. 111-122.
  12. Kim, S. U., Lee, K. S. (2008b). "At-site low flow frequency analysis using Bayesian MCMC: II. Application and Comparative Studies", Journal of Korean Water Resources Association, Vol. 41, No. 1, pp. 49-63. https://doi.org/10.3741/JKWRA.2008.41.1.049
  13. Kim, Y. S., Heo, J. H. and Ryu, H. J., (1995). "Study on Applicability of Probability Weighted Moment Method to Rainfall Frequency Analysis", Journal of Korean Society of Civil Engineers, Vol. 15, No. 6, pp. 1647-1658.
  14. Kwon, H. H., Moon, Y. I., Kim, B. S. and Yoon, S. Y. (2008). "Parameter Optimization and Uncertainty Analysis of the NWS-PC Rainfall-Runoff Model Coupled with Bayesian Markov Chain Monte Carlo Inference Scheme", Journal of Korean Society of Civil Engineers, Vol. 28, No. 4B, pp. 383-392.
  15. Kwon, Y. M., Park, J. W. and Kim, T.-W. (2009). "Estimation of Design Rainfalls Considering an Increasing Trend in Rainfall Data", Journal of Korea Water Resources Association, Vol. 29, No. 2B, pp. 131-139.
  16. Lee, C.J., Ahn, J.H. and Kim, T.W. (2010). "Evaluation of probability rainfalls estimated from non-stationary rainfall frequency analysis", Journal of Korean Water Resources Association, Vol. 43, No. 2, pp. 187-199. https://doi.org/10.3741/JKWRA.2010.43.2.187
  17. Lee, J.J., Kwon, H.H. and Kim, T.W. (2010). "Concept of Trend Analysis of Hydrologic Extreme variables and Nonstationary Frequency Analysis", Journal of Korean Society of Civil Engineers, Vol. 30, No. 4B, pp. 389-397.
  18. Lee, J.S. (2006). Hydrology, Goomibook, Seoul, Korea (in Korean).
  19. Lee, S. B. (2004). "A Comparative Study on Parametric and Nonparametric Methods of Rainfall Frequency Analyses", M.S. dissertation, Yonsei University.
  20. Ministry of Land, Transport and Maritime Affairs (2012). "Guideline of estimating design flood (in Korean)."
  21. O'Connell, D. R., Ostenaa, D. A., Levish, D. R. and Klinger, R. E. (2002). "Bayesian flood frequency analysis with paleohydrologic bound data.", Water Resources Research, Vol. 38, No. 5, pp. 16-1.
  22. Park, Y.J., Kwon H.-H., Chung, E.S., Kim, T.-W. (2014). "Comparison of design rainfalls from the annual maximum and the non-annual exceedance series", Journal of the Korean Society of Civil Engineers, Vol. 34, No. 2, pp. 469-478. https://doi.org/10.12652/Ksce.2014.34.2.0469
  23. Reis, D. S. and Stedinger, J. R. (2005). "Bayesian MCMC flood frequency analysis with historical information. Journal of Hydrology", Vol. 313, No. 1, pp. 97-116. https://doi.org/10.1016/j.jhydrol.2005.02.028
  24. Seo, Y. M. and Park, K. B. (2011). "Uncertainty Analysis for Parameter Estimation of Probability Distribution in Rainfall Frequency Analysis Using Bootstrap", Journal of the Environmental Sciences, Vol. 20, No. 3, pp. 321-327. https://doi.org/10.5322/JES.2011.20.3.321
  25. Seo, Y.M. and Park, K.B. (2011). "Uncertainty analysis for parameters of probability distribution in rainfall frequency analysis by Bayesian MCMC and Metropolis Hastings Algorithm", Journal of the Environmental Sciences, vol. 20, No. 3, pp.329-340. https://doi.org/10.5322/JES.2011.20.3.329
  26. Shin, J. Y., Park, Y. J. and Kim T.-W. (2013). "Estimation of Future Design Rainfalls in Administrative Districts Using Nonstationary GEV Model", Journal of KOSHAM, Vol. 13, No. 3, pp. 147-156.
  27. Tasker, G.D. (1987). "Comparison of methods for estimating low flow characteristic of streams", Water Resources Bull., Vol. 23, No. 6, pp. 1077-1083. https://doi.org/10.1111/j.1752-1688.1987.tb00858.x

Cited by

  1. A development of downscaling scheme for sub-daily extreme precipitation using conditional copula model vol.49, pp.10, 2016, https://doi.org/10.3741/JKWRA.2016.49.10.863