DOI QR코드

DOI QR Code

Statistical analysis of hazen-williams C and influencing factors in multi-regional water supply system

광역상수도 유속계수와 영향인자에 관한 통계적 분석

  • Kim, Bumjun (Korea Infrastructure Safety and Technology Corporation) ;
  • Kim, Gilho (Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Hung soo (Dept. of Civil Engineering, Inha University)
  • 김범준 (한국시설안전공단 시설물정보센터) ;
  • 김길호 (한국건설기술연구원 수자원.하천연구소) ;
  • 김형수 (인하대학교 사회인프라공학과)
  • Received : 2016.01.05
  • Accepted : 2016.03.14
  • Published : 2016.05.31

Abstract

In case of the application of Hazen-Williams C for design, operation or maintenance of water supply system, field situations always should be reflected on the factors. In this study, the relationships between C factors and influencing factors are analyzed using statistical techniques with 174 measured C factor data collected in periodic inspection for safety diagnosis in multi-regional water supply systems. To analyze their relationships, cross analysis, one-way ANOVA, correlation analysis were conducted. Analysis results showed that C factors had high correlations with both of elapsed year and pipe diameter and were relatively highly affected by coating material among influencing factors with the categorical type. On the other hand, elapsed year, pipe diameter and water type were meaningful influencing factors according to the results of multiple regression analysis. The Cluster analysis revealed that C factors had a tendency of being fundamentally classified on the basis of the elapsed year of about 20 years and the pipe diameter of 1500mm. Although C factors were generally greatly affected by elapsed year, size of pipe diameter relatively had an large influence on values of them in case of large diameter pipes. Lastly, It can be suggested that C factor estimation formulas using multiple regression analysis and clustering analysis in this study, can be applied as decision standards of C factor in multi-regional water supply systems.

유속계수는 상수도 설계, 운영, 유지관리 등의 과정에서 항상 현장 실정이 고려된 값이 사용되어야 한다. 본 연구는 광역상수도 정밀안전진단 과정에서의 174개 실측자료를 바탕으로 유속계수와 주요 인자 간의 관계를 통계적 기법을 활용하여 분석하였다. 이들 관계를 분석하기 위해서 교차분석, 일원배치 분산분석, 상관분석 등을 수행하였으며, 그 결과 유속계수와 사용년수 및 관경이 높은 상관관계를 나타내고 여러 범주형 자료 형태 영향인자 중에 내부도장재가 상대적으로 유속계수에 많은 영향을 주는 것으로 검토되었다. 반면 다중회귀분석의 결과에서는 사용년수, 관경 및 수종이 중요한 영향인자인 것으로 검토되었다. 군집분석 결과, 유속계수는 기본적으로 사용년수 약 20년, 관경 1500mm를 기준으로 분류되는 경향이 있었으며, 유속계수는 전반적으로 사용년수에 많은 영향은 받으나 대구경 관에서는 상대적으로 사용년수보다 관경에 많은 영향을 받는 것으로 검토되었다. 마지막으로 본 연구에서는 회귀분석과 군집분석을 사용하여 유속계수 산정식들을 제안하였으며, 이러한 추정식들은 추후 광역상수도의 유속계수 결정 및 사용 시에 판단기준이 될 수 있을 것으로 판단된다.

Keywords

References

  1. Chung, W. S., Lee, H. D., Kim, I. T., Yu, M. J. (2003). Correlation Analysis of Environmental Factor for Drinking Water Pipe Deterioration, Jouranl of the Korean Society of Water and Wastewater, Vol. 17, No. 2, pp. 242-249.
  2. Jeon, C. H. (2012). Data Mining Technique and Application, Hannarae Academy, pp 64.
  3. Kim, J. K., Park, J. H., Park, H. J., Lee, J. J., Jeon, H. S, Hwang, J. S. (2009). Statistics for Engineer, Free Academy, pp. 247.
  4. Kim, J. H., Kim, Z. W., Lee, H. D., Kim, S. H. (1996). Development of Rehabilitation and Management Techniques for Old Water Distribution System, Journal of Korea Water Resources Association, Vol. 29, No. 3, pp. 197-205.
  5. Lee, C. H., Ahn, J. H., Lee, J. H., Kim, T. W. (2009). Prediction of Scour Depth Using Incorporation of Cluster Analysis into Artificial Neural Networks, Journal of Korean Society of Civil Engineers, Vol. 29, No. 2B, pp. 111-120.
  6. Lee, H. D., K-water (1995). Developement of Decision-Support System for Water Pipeline Rehabilitations.
  7. Park, S. W., Im, K. C., Choi, C. L., Kim, K. L. (2009). Hierarchial Clustering Analysis of Water Main Leak Location Data, Journal of Korea Water Resources Association Vol. 42, No. 3, pp. 177-190. https://doi.org/10.3741/JKWRA.2009.42.3.177
  8. Son, K. I. (1996). Predicting Flow Resistance Coefficients in Water Supply Mains, Journal of Korea Water Resources Association Vol. 29, No. 4, pp. 223-231.
  9. Walski, T. M., Sharp, W. W., Shieldsm, F. D. (1988). Prediction Internal Roughness in Water Mains, Miscellaneous Paper EL-88-2, US Army Engineering Waterways Experiment Station.
  10. Won, T. Y., Jung, S. W. (2013). SPSS PASW Statistics 18.0 Statistical Research Analysis, Hannarae Academy, pp. 339.

Cited by

  1. Development of Heavy Rain Damage Prediction Functions in the Seoul Capital Area Using Machine Learning Techniques vol.18, pp.7, 2018, https://doi.org/10.9798/KOSHAM.2018.18.7.435