DOI QR코드

DOI QR Code

레조르시놀 비스-에틸헥사노에이트를 함유한 나노에멀젼의 유화제 종류에 따른 형성

Formation of Nano-emulsions with Resorcinol bis-ethylhexanoate upon Type of Emulsifiers

  • 조완구 (전주대학교 의과학대학 바이오.기능성식품학과)
  • 투고 : 2016.01.11
  • 심사 : 2016.03.11
  • 발행 : 2016.03.30

초록

본 연구에서는 미백제인 RS White를 함유한 O/W 나노에멀젼의 형성 가능성을 유화제 종류별로 실험하였다. 친수성계면활성제로 Tween 80, 60, HCO 60 및 40과 친유성 계면활성제로 Span 80을 사용한 시스템에서는 적정한 농도에서 나노에멀젼이 형성되었으나 Myrj 52, Montanov L 및 Tegocare 450과 Span 80을 사용한 시스템에서는 형성되지 않았다. 형성된 나노에멀젼은 입자의 직경이 100 nm 미만의 반투명 외관을 보였으며 시간 경과에 따른 안정성 평가에서도 안정성을 유지하였다. 이들의 경피흡수 정도를 마크로에멀젼과 비교한 결과 24 h 동안 피부 투과량은 나노에멀젼은 $70.84{\mu}g/cm^2$, O/W 마크로에멀젼은 $28.97{\mu}g/cm^2$으로 나타났다. 따라서, 본 연구는 RS White 미백제를 함유한 안정한 나노에멀젼이 기능성 소재의 효율적인 피부 전달체로서 응용 가능성이 있음을 시사한다.

RS White (resorcinol bis-ethylhexanoate) is used in cosmetics as a skin whitening agent. In this study, we studied the possibility of nano-emulsion formation containing whitening agent, RS White, with different types of emulsifying agents. With Tween 80, 60, HCO 60 and 40 as a hydrophilic surfactants and Span 80 as ahydrophilic surfactant, nano-emulsions were formed at appropriate concentrations, but they were not formed in the system using the Myrj 52, Montanov L, and Tegocare 450 with Span 80. The diameter of nano-emulsion sphere was smaller than 100 nm. The emulsion showed a translucent appearance and maintained stability in stability evaluation with time. In vitro skin permeation experiments showed that amounts of skin permeated nano-emulsion for 24 h were $70.84{\mu}g/cm^2$ and those of O/W emulsion were $28.97{\mu}g/cm^2$. In conclusion, a stable nano-emulsion containing the resorcinol bis-ethylhexanoate is effective for potential efficacy system as an efficient delivery system of the functional materials into skin.

키워드

참고문헌

  1. S. Briganti, E. Camera, and M. Picardo, Chemical and instrumental approaches to treat hyperpigmentation, Pigment. Cell. Res., 16(2), 101 (2003). https://doi.org/10.1034/j.1600-0749.2003.00029.x
  2. W. G. Cho, C. T. Kim, S. H. Choi, and Y. K. Cha, Report of global cosmetic projects of Ministry of Health & Welfare, Republic of Korea (Project No. HN12C0056) (2014).
  3. C. Solans, P. Izquierdo, J. Nolla, N. Azemar, and M. J. Garcia-Celma, Nano-emulsions, Curr. Opin. Colloid Inter. Sci., 10(3-4), 102 (2005). https://doi.org/10.1016/j.cocis.2005.06.004
  4. C. Solans, I. Sole, A. Fernandez-Arteaga, J. Nolla, N.Azemar, J. M. Gutierrez, A. Maestro, C. Gonzalez, and C. M. Pey, Surfactant science series, Ed. Hidalgo-Alvarez Roque, 146, Taylor and Francis Group (2010).
  5. J. M. Gutierrez, C. Gonzalez, A. Maestro, I. Sole, C. M. Pey, and J. Nolla, Nano-emulsions: New applications and optimization of their preparation, Curr. Opin. Colloid Interf. Sci., 13, 245 (2008). https://doi.org/10.1016/j.cocis.2008.01.005
  6. M. Antonietti and K. Landfester, Polyreactions in miniemulsions, Prog. Polym. Sci., 27(4), 689 (2002). https://doi.org/10.1016/S0079-6700(01)00051-X
  7. J. M. Asua, Miniemulsion polymerization, Prog. Polym. Sci., 27, 1283 (2002). https://doi.org/10.1016/S0079-6700(02)00010-2
  8. T. Delmas, H. Piraux, A. C. Couffin, I. Texier, F. Vinet, P. Poulin, M. E. Cates, and J. Bibette, How to prepare and stabilize very small nanoemulsions, Langmuir, 27(5), 1683 (2011). https://doi.org/10.1021/la104221q
  9. F. Ganachaud and J. L. Katz, Nanoparticles and nanocapsules created using the Ouzo effect: spontaneous emulsification as an alternative to ultrasonic and high-shear devices, Chem. Phys. Chem., 6(2), 209 (2005). https://doi.org/10.1002/cphc.200400527
  10. A. Forgiarini, J. Esquena, C. Gonzalez, and C. Solans, Formation of nano-emulsions by low-energy emulsification methods at constant temperature, Langmuir, 17(7), 2076 (2001). https://doi.org/10.1021/la001362n
  11. W. Liu, D. Sun, C. Li, Q. Liu, and J. Xu, Formation and stability of paraffin oil-in-water nano-emulsions prepared by the emulsion inversion point method, J. Colloid Interf. Sci., 303(2), 57 (2006).
  12. O. Sonneville-Aubrun, D. Babayan, D. Bordeaux, P. Lindner, G. Rata, and B. Cabane, Phase transition pathways for the production of 100 nm oil-in-water emulsions, Phys. Chem. Chem. Phys., 11(1), 101 (2009). https://doi.org/10.1039/B813502A
  13. D. Morales, J. M. Gutierrez, M. J. Garcia-Celma, and C. Solans, A study of the relation between bicontinuous microemulsions and oil/water nanoemulsion formation, Langmuir, 19(18), 7196 (2003). https://doi.org/10.1021/la0300737
  14. P. Izquierdo, J. Esquena, Th. F. Tadros, C. Dederen, J. Feng, M. J. Garcia-Celma, N. Azemar, and C. Solans, Phase behavior and nano-emulsion formation by the phase inversion temperature method, Langmuir, 20(16), 6594 (2004). https://doi.org/10.1021/la049566h
  15. E. H. Kim and W. G. Cho, Nano-emulsion formed with phospholipid-nonionic surfactant mixtures and its stability, J. Soc. Cosmet. Sci. Kor., 40(3), 221 (2014).
  16. E. H. Kim and W. G. Cho, Candelilla wax nanoemulsions prepared by phase inversion composition(PIC) method, J. Kor. Oil Chem. Soc., 31(2), 203 (2014). https://doi.org/10.12925/jkocs.2014.31.2.203
  17. E. H. Kim and W. G. Cho, Nanoemulsions containing vitamin E acetate prepared by PIC(Phase Inversion Composition) methods: Factors affecting droplets sizes, J. Kor. Oil Chem. Soc., 30(4), 602 (2013). https://doi.org/10.12925/jkocs.2013.30.4.602
  18. E. H. Kim and W. G. Cho, Stable liquid paraffin-in-water nanoemulsions prepared by phase inversion composition method, J. Soc. Cosmet. Sci. Kor., 40(2), 133 (2014).
  19. W. G. Cho, Application of stable O/W nanoemulsions with skin depigmenting agent for integration type of cosmetics, J. of Digital Convergence, 13(4), 417 (2015).
  20. F. Shakeel, S. Baboota, A. Ahuja, J. Ali, and S. Shafiq, Skin permeation mechanism and bioavailability enhancement of celecoxib from transdermally applied nanoemulsion, J. of Nanobiotechnology, 6(8), 1 (2008). https://doi.org/10.1186/1477-3155-6-1