DOI QR코드

DOI QR Code

Photonic-Crystal-Based Thin Film Sensor for Detecting Volatile Organic Compounds

광결정 기반의 휘발성 유기 화합물 검지 박막 센서

  • Received : 2015.10.02
  • Accepted : 2016.01.22
  • Published : 2016.03.01

Abstract

Early detection of toxic gases, such as volatile organic compounds (VOCs), is important for safety and environmental protection. However, the conventional detection methods require long-term measurement times and expensive equipment. In this study, we propose a thin-film-type chemical sensor for VOCs, which consists of self-assembled monosize nanoparticles for 3-D photonic crystal structures and polydimthylsiloxane (PDMS) film. It is operated without any external power source, is truly portable, and has a fast response time. The structure color of the sensor changes when it is exposed to VOCs, because VOCs induce a swelling of the PDMS. Therefore, using this principle of color change, we can create a thin-film sensor for immediate detection of various types of VOCs. The proposed device evidences that a fast response time of just seconds, along with a clear color change, are successfully observed when the sensor is exposed to gas-phase VOCs.

휘발성 유기화합물과 같은 환경유해물질의 조기 검지는 인체 및 환경보호를 위한 중요성을 가진다. 그러나 기존의 모니터링 기술은 많은 시간과 값비싼 장비를 필요로 하고 있다. 본 논문에서는, 무전원으로 작동가능하며, 휴대가 용이하고 빠른 응답속도를 가지는 광결정 기반의 VOC 검출용 박막센서를 제안하였다. 휘발성 유기 화합물은 Polydimethylsiloxane(PDMS)를 팽창시키는 능력을 가지고 있어, 제안된 센서에 휘발성 유기 화합물이 노출되면 PDMS 가 팽창함에 따라 광결정의 구조변화를 가져오므로 색이 변하게 된다. 이러한 원리에 기초하여 휘발성 유기 화합물에 노출되었을 때 가시광선 영역의 정량적 색변화를 통해 검출할 수 있는 환경센서를 구현하였다. 제안된 센서는 수 초 이내의 빠른 반응속도를 보이며, 기체 상태의 휘발성 유기 화합물에도 색 변화를 일으키는 것을 성공적으로 확인하였다.

Keywords

References

  1. Bevan, M.A.J., Proctor, C.J., Bakerrogers, J. and Warren, N.D., "Exposure to Carbon-Monoxide, Respirable Suspended Particulates, and Volatile Organic-Compounds While Commuting by Bicycle," Environmental Science & Technology, 1991, Vol. 25, No. 4, pp. 788-791. https://doi.org/10.1021/es00016a026
  2. Hagerman, L.M., Aneja, V.P. and Lonneman, W.A., "Characterization of Non-methane Hydrocarbons in the Rural Southeast United States," Atmospheric Environment, 1997, Vol. 31, No. 23, pp. 4017-4038. https://doi.org/10.1016/S1352-2310(97)00223-9
  3. Bessa, V., Darwiche, K., Teschler, H., Sommerwerck, U., Rabis, T., Baumbach, J. and Freitag, L., "Detection of Volatile Organic Compounds (VOCs) in Exhaled Breath of Patients with Chronic Obstructive Pulmonary Disease (COPD) by Ion Mobility Spectrometry," International Journal for Ion Mobility Spectrometry, 2011, Vol. 14, No. 1, pp. 7-13. https://doi.org/10.1007/s12127-011-0060-2
  4. Giger, W. and Molnar-Kubica, E., "Tetrachloroethylene in Contaminated Ground and Drinking Waters," Bulletin of Environmental Contamination and Toxicology, 1978, Vol. 19, No. 1, pp. 475-480. https://doi.org/10.1007/BF01685829
  5. Wallace, L.A., Pellizzari, E.D., Hartwell, T.D., Davis, V., Michael, L.C. and Whitmore, R.W., "The Influence of Personal Activities on Exposure to Volatile Organic Compounds," Environmental Research, 1989, Vol. 50, No. 1, pp. 37-55. https://doi.org/10.1016/S0013-9351(89)80047-7
  6. Feng, L.A., Musto, C.J., Kemling, J.W., Lim, S.H., Zhong, W.X. and Suslick, K.S., "Colorimetric Sensor Array for Determination and Identification of Toxic Industrial Chemicals," Analytical Chemistry, 2010, Vol. 82, No. 22, pp. 9433-9440. https://doi.org/10.1021/ac1020886
  7. Nath, N. and Chilkoti, A., "Label Free Colorimetric Biosensing Using Nanoparticles," Journal of Fluorescence, 2004, Vol. 14, No. 4, pp. 377-389. https://doi.org/10.1023/B:JOFL.0000031819.45448.dc
  8. Suslick, K.S., "An Optoelectronic Nose: "Seeing" Smells by Means of Colorimetric Sensor Arrays," MRS Bulletin, 2004, Vol. 29, No. 10, pp. 720-725. https://doi.org/10.1557/mrs2004.209
  9. Endo, T., Yanagida, Y. and Hatsuzawa, T., "Colorimetric Detection of Volatile Organic Compounds using a Colloidal Crystal-based Chemical Sensor for Environmental Applications," Sensors and Actuators B-Chemical, 2007, Vol. 125, No. 2, pp. 589-595. https://doi.org/10.1016/j.snb.2007.03.003
  10. Smith, G. S., "Structural Color of Morpho Butterflies," American Journal of Physics, 2009, Vol. 77, No. 11, pp. 1010-1019. https://doi.org/10.1119/1.3192768
  11. Joannopoulos, J.D., Meade, R.D. and Winn, J.N., Photonic Crystals : Molding the Flow of Light. 1995, Princeton, N.J.: Princeton University Press. ix, p. 137.
  12. Johnson, S.G. and Joannopoulos, J.D., Photonic Crystals : the Road from Theory to Practice. 2002, Boston: Kluwer Academic Publishers. p. 156.
  13. Lee, J.N., Park, C. and Whitesides, G.M., "Solvent Compatibility of Poly(dimethylsiloxane)-based Microfluidic Devices," Analytical Chemistry, 2003, Vol. 75, No. 23, pp. 6544-6554. https://doi.org/10.1021/ac0346712
  14. Malaquin, L., Kraus, T., Schmid, H., Delamarche, E. and Wolf, H., "Controlled Particle Placement through Convective and Capillary Assembly," Langmuir, 2007, Vol. 23, No. 23, pp. 11513-11521. https://doi.org/10.1021/la700852c
  15. Hiltner, P.A. and Krieger, I.M., "Diffraction of Light by Ordered Suspensions," The Journal of Physical Chemistry, 1969, Vol. 73, No. 7, pp. 2386-2389. https://doi.org/10.1021/j100727a049
  16. Romanov, S., Maka, T., Sotomayor Torres, C., Muller, M. and Zentel, R., Thin Opaline Photonic Crystals, in Photonic Crystals and Light Localization in the 21st Century, C. Soukoulis, Editor. 2001, Springer Netherlands. pp. 253-262.