• Title/Summary/Keyword: Diabatic Process

Search Result 6, Processing Time 0.019 seconds

Thermodynamic Analysis of the Diabatic Efficiency of Turbines and Compressors (터빈과 압축기의 비단열 효율에 대한 열역학적 해석)

  • Park, Kyoung Kuhn
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.3
    • /
    • pp.139-148
    • /
    • 2016
  • Thermodynamic analysis is conducted on the first-order approximation model for turbines and compressors. It is shown that the adiabatic efficiency could be greater than unity, depending on the entropic mean temperature, entropy generation, thermal reservoir temperature, and heat transfer. Therefore, adiabatic efficiency applied to a diabatic control volume results in an error overestimating its performance. To resolve this overestimation, it is suggested that a reversible diabatic process be referred to as an ideal process to evaluate diabatic efficiency. The diabatic efficiency suggested in this work is proven to always be less than unity and it is smaller than the exergy efficiency in most cases. The diabatic efficiency could be used as a more general definition of efficiency, which would include adiabatic efficiency.

Experimental Study for Influence of Summertime Heat Sources and Basic States on Rossby Wave Propagation (여름철 열원과 기본장이 로스비 파동전파에 미치는 영향에 대한 실험 연구)

  • Kim, Seong-Yeol;Ha, Kyung-Ja;Yun, Kyung-Sook
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.505-518
    • /
    • 2010
  • We investigated the impacts of the diabatic heating location, vertical profile and basic state on the Rossby wave propagation. To examine the dynamical process of individual responses on the regional heat source, a dry version of the linear baroclinic model was used with climatological summertime (JJA) mean basic state and vertical structure of the diabatic heating for 1979-2008. Two sets of diabatic heating were constructed of those positioned in the mid-latitudes (Tibetan Plateau, eastern Mediterranean Sea, and the west-central Asia) and the tropics (the southern India, Bay of Bengal, and western Pacific). It was found that using the principal component analysis, atmospheric response to diabatic heating reaches to the steady state in 19th days in time. The prescribed mid-latitude forcing forms equivalent barotropic Rossby wave propagation along the westerly Asia jets, whereas the tropical forcing generates the Rossby wave train extending from the tropics to mid-latitudes. In relation to the maximum vertical profile, the mid-level forcing reveals a stronger response than the lower-level forcing, which may be caused by more effective Rossby wave response by the upper-level divergent flow. Under the different sub-seasonal mean state, both of the tropical and mid-latitude forcing induce the different sub-seasonal response intensity, due to the different basic-state wind.

Application of Multichannel Quantum Defect Theory to the Triatomic van der Waals Predissociation Process

  • Chun-Woo Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.228-238
    • /
    • 1991
  • Generalized multichannel quantum defect theory [C. H. Greene et al. Phys. Rev., A26, 2441 (1982)] is implemented to the vibrational predissociation of triatomic van der Waals molecules. As this is the first one of such an application, the dependences of the quantum defect parameters on energy and radius are examined carefully. Calculation shows that, in the physically important region, quantum defect parameters remain smoothly varying functions of energy for this system as in atomic applications, thus allowing us very coarse energy mesh calculations for the photodissociation spectra. The choice of adiabatic or diabatic potentials as reference potentials for the calculation of quantum defect parameters as done by Mies and Julienne [J. Chem. Phys., 80, 2526 (1984)] can not be used for this system. Physically motivated reference potentials that may be generally applicable to all kinds of systems are utilized instead. In principle, implementation can be done to any other predissociation processes with the same method.

The Impact of Satellite Observations on Large-Scale Atmospheric Circulation in the Reanalysis Data: A Comparison Between JRA-55 and JRA-55C (위성 자료가 재분석자료의 대규모 대기 순환장에 미치는 영향: JRA-55와 JRA-55C 비교 연구)

  • Park, Mingyu;Choi, Yooseong;Son, Seok-Woo
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.523-540
    • /
    • 2016
  • The effects of satellite observations on large-scale atmospheric circulations in the reanalysis data are investigated by comparing the latest Japanese Meteorological Association's reanalysis data (JRA-55) and its family data, JRA-55 Conventional (JRA-55C). The latter is identical to the former except that satellite observations are excluded during the data assimilation process. Only conventional datasets are assimilated in JRA-55C. A simple comparison revealed a considerable difference in temperature and zonal wind fields in both the stratosphere and troposphere. Such differences are particularly large in the Southern Hemisphere and whole stratosphere where conventional ground-based measurements are limited. The effects of satellite observations on the zonal-mean tropospheric circulations are further examined in terms of the Hadley cell, eddy-driven jet, and mid-latitude storm tracks. In both hemispheres, JRA-55C exhibits slightly weaker and narrower Hadley cell than JRA-55. This is consistent with a weaker diabatic heating in JRA-55C. The eddy-driven jet shows a small difference in its latitudinal location only in the Southern Hemisphere. Likewise, while the Northern-Hemisphere storm tracks are quantitatively similar in the two datasets, Southern-Hemisphere storm tracks are relatively weaker in JRA-55C than in JRA-55. Their difference is comparable to the uncertainty between reanalysis datasets, indicating that satellite data assimilation could yield significant corrections in the zonal-mean circulation in the Southern Hemisphere.

Analysis of the West Coast Heavy Snowfall Development Mechanism from 23 to 25 January 2016 (2016년 1월 23일~25일에 발생한 서해안 대설 발달 메커니즘 분석)

  • Lee, Jae-Geun;Min, Gi-Hong
    • Atmosphere
    • /
    • v.28 no.1
    • /
    • pp.53-67
    • /
    • 2018
  • This study examined the lake effect of the Yellow Sea which was induced by the Siberian High pressure system moving over the open waters. The development mechanism of the convective cells over the ocean was studied in detail using the Weather Research and Forecasting model. Numerical experiments consist of the control experiment (CTL) and an experiment changing the yellow sea to dry land (EXP). The CTL simulation result showed distinct high area of relative vorticity, convergence and low-level atmospheric instability than that of the EXP. The result indicates that large surface vorticity and convergence induced vertical motion and low level instability over the ocean when the arctic Siberian air mass moved south over the Yellow Sea. The sensible heat flux at the sea surface gradually decreased while latent heat flux gradually increased. At the beginning stage of air mass modification, sensible heat was the main energy source for convective cell generation. However, in the later stage, latent heat became the main energy source for the development of convective cells. In conclusion, the mechanism of the west coast heavy snowfall caused by modification of the Siberian air mass over the Yellow Sea can be explained by air-sea interaction instability in the following order: (a) cyclonic vorticity caused by diabatic heating induce Ekman pumping and convergence at the surface, (b) sensible heat at the sea surface produce convection, and (c) this leads to latent heat release, and the development of convective cells. The overall process is a manifestation of air-sea interaction and enhancement of convection from positive feedback mechanism.

Distribution of Precipitation on the Korean Peninsula Associated with the Weakening of Tropical Cyclones (태풍의 약화와 관련된 한국의 강수량 분포)

  • Hwang, Ho-Seong;Byun, Hi-Ryong;Lee, Sang-Min;Choi, Ki-Seon;Lee, Ji-Sun
    • Journal of the Korean earth science society
    • /
    • v.31 no.4
    • /
    • pp.322-334
    • /
    • 2010
  • Spatiotemporal characteristics of precipitation in Korea, associated with the weakening of Tropical Cyclones (TCs) around the Korean Peninsula ($32-36^{\circ}N$, $122-132^{\circ}E$) over the last 30 years (1979-2008), were investigated. Weakened TCs are classified as WEC (Weakened to Extratropical Cyclone) and WTD (Weakened to Tropical Depression). In WEC, precipitation was evenly distributed all over the Korean Peninsula and the greater precipitation was recorded in the southern coast. In WTD, the most precipitation was recorded in the southern coast but low precipitation was recorded in the central and inland areas of Korea. The difference of precipitation between WEC and WTD was not statistically significant in Region 2 (Jeollanam-do, Gyeongsangnam-do, southeastern part of Gyeongsangbuk-do, Jeju-do); however, the precipitation resulting from WEC was greater than that resulting from WTD in Region 1 (central area of Korea, Jeollabuk-do, inland of Gyeongsangbuk-do). In WEC, the developed upper-level potential vorticity (PV) and low-level temperature trough shifted to the northwest of TCs approaching Korea. In addition, an upper-level jet stream and strong divergence field were observed to the northeast of the TCs. It was assumed that these meteorological factors had induced baroclinic instability and diabatic process, which created a large precipitation area around the TCs. However, the intense PV, temperature trough, jet stream were not observed in WTD, which created a small precipitation area around the TCs.