DOI QR코드

DOI QR Code

차량용 연료전지 냉각시스템 제어 알고리즘 특성 연구

Control Algorithm Characteristic Study of Cooling System for Automotive Fuel Cell Application.

  • Han, Jae Young (Dept. of Mechanical Engineering, Chungnam Nat'l Univ.) ;
  • Park, Ji Soo (Dept. of Mechanical Engineering, Chungnam Nat'l Univ.) ;
  • Yu, Sangseok (Dept. of Mechanical Engineering, Chungnam Nat'l Univ.)
  • 투고 : 2015.07.13
  • 심사 : 2015.11.20
  • 발행 : 2016.01.01

초록

차량용 연료전지의 부하 변동시 열관리는 성능과 내구성에 직결되기 때문에 매우 중요하다. 본 연구에서는 작동 부하 조건 내에 온도를 유지할 수 있도록 하기 위한 열관리 시스템용 선형 상태 궤환 제어기를 설계하였다. 차량용 연료전지 열관리 모델은 레저버, 라디에이터, 바이패스 밸브, 팬 그리고 냉각수 펌프 등으로 구성하였으며, MATLAB/SIMULINK$^{(R)}$으로 개발하였다. 시스템 모델의 비선형성으로 인해, 부하 조건 $0.5A/cm^2{\sim}0.7A/cm^2$ 에서 온도 제어 지령을 정상적으로 달성하기 위해 PWM(Pulse Width Modulation)과 수정된 상태 궤환 제어기를 적용하였고 제어 알고리즘의 성능은 ITAE(Integral time weighted error)로 평가하였다. 수정된 상태 궤환 제어기가 저 부하 구간에서 다른 알고리즘에 비해 더 효율적으로 온도를 제어하는 것을 확인하였다.

Thermal management of a fuel cell is important to satisfy the requirements of durability and efficiency under varying load conditions. In this study, a linear state feedback controller was designed to maintain the temperature within operating conditions. Due to the nonlinearity of automotive fuel cell system, the state feedback controller results in marginal stable under load condition from $0.5A/cm^2$ to $0.7A/cm^2$. A PWM (Pulse Width Modulation) and the modified state feedback controller are applied to control the temperature under the load condition from $0.5A/cm^2$ to $0.7A/cm^2$. The cooling system model is composed of a reservoir, radiator, bypass valve, fan, and a water pump. The performance of the control algorithm was evaluated in terms of the integral time weighted absolute error (ITAE). Additionally, MATLAB/SIMULINK$^{(R)}$ was used for the development of the system models and controllers. The modified state feedback controller was found to be more effective for controlling temperature than other algorithms when tested under low load conditions.

키워드

참고문헌

  1. Vasu, G. and Tangirala, A. K., 2008, "Control-Orientated Thermal Model for Proton-exchange Membrane Fuel Cell Systems," Journal of Power Sources, Vol. 183, pp. 98-108. https://doi.org/10.1016/j.jpowsour.2008.03.087
  2. Pukrushpan, J. T., 2003, Modeling and control of fuel cell systems and fuel processor systems, PhD dissertation, The University of Michigan.
  3. Liso, V., Nielsen, M. P., Koer, S. K. and Mortensen, H. H., 2014, "Thermal Modeling and Temperature Control of a PEM Fuel Cell System for Forklift Applications," International Journal of Hydrogen Energy, Vol. 39,No. 16, pp. 8410-8420. https://doi.org/10.1016/j.ijhydene.2014.03.175
  4. Hu, P., Cao, G. Y., Zhu, X. J. and Hu, M., 2010, "Coolant Circuit Modeling and Temperature Fuzzy Control of Proton Exchange Membrane Fuel Cells," International Journal of Hydrogen Energy, Vol. 35, No. 17, pp. 9110-9123. https://doi.org/10.1016/j.ijhydene.2010.06.046
  5. Choe, S. Y., 2008, "Dynamic Simulator and Controls for a PEM Fuel Cell Power System," The world Electric Vehicle Journal, Vol. 2, Issue. 3, pp. 219-235. https://doi.org/10.3390/wevj2030219
  6. Yu, S. S. and Jung, D., 2010, "A Study of Operation Strategy of Cooling Module with Dynamic Fuel Cell System Model for Transportation Application," Renewable energy, Vol. 35, No.11, pp. 2525-2532. https://doi.org/10.1016/j.renene.2010.03.023
  7. Hwang, J. J., 2013, "Thermal Control and Performance Assessment of a Proton Exchanger Membrane Fuel Cell Generator," Applied energy, Vol. 108, pp. 184-193. https://doi.org/10.1016/j.apenergy.2013.03.025
  8. Wang, L., Husar, A., Zhou, T. and Liu, H., 2003, "A Parametric Study of PEM Fuel Cell Performances," International Journal of Hydrogen Energy, Vol. 28, No. 11, pp. 1263-1272. https://doi.org/10.1016/S0360-3199(02)00284-7
  9. Han, J. Y., Lee, G. H. and Yu, S. S., 2012, "Dynamic Modeling of Cooling System Thermal Management for Automotive PEMFC Application," Trans. Korean Soc. Mech. Eng. B, Vol. 36, No. 12, pp. 1185-1192. https://doi.org/10.3795/KSME-B.2012.36.12.1185
  10. Bryson, A. E. and Ho, Y. C., 1975, Applied optimal control, Homisphere pub. Cor.
  11. Sayglil, Y., Eroglu, I. and Kincal, S., "Model based Temperature Controller Development for Water cooled PEM Fuel Cell Systems," International Journal of Hydrogen Energy, Vol. 40, No. 1, pp. 615-622. https://doi.org/10.1016/j.ijhydene.2014.10.047

피인용 문헌

  1. Temperature Control for Proton Exchange Membrane Fuel Cell based on Current Constraint with Consideration of Limited Cooling Capacity vol.17, pp.5, 2017, https://doi.org/10.1002/fuce.201700001