DOI QR코드

DOI QR Code

격자 볼츠만법을 이용한 리튬이온전지의 활물질 혼합비에 대한 함침성의 영향

Effect of Mixing Ratio of Active Material on the Wettability in Lithium-Ion Battery Using Lattice Boltzmann Method

  • 전동협 (동국대학교 기계부품시스템공학과)
  • 투고 : 2015.07.17
  • 심사 : 2015.12.05
  • 발행 : 2016.01.01

초록

격자 볼츠만법을 이용하여 리튬이온전지의 전극 내 발생하는 전해액 함침 현상에 관하여 연구하였다. 최근 리튬이온전지는 용량 증가 및 에너지밀도 향상을 위하여 전극 설계시 활물질에 미세입자를 혼합하고 있어, 이로 인하여 전해액 함침성에 영향을 미치게 될 수 있다. 본 연구에서는 활물질 혼합율에 따른 전해액 분포와 포화도 변화를 알아보았다. 활물질 혼합비의 변화는 전극 내 전해액 함침 메커니즘에 영향을 주어, 전해액 함침속도와 함침도가 변화함을 확인하였다.

The electrolyte wetting phenomena occurring in the electrode of lithium-ion battery was studied using lattice Boltzmann method (LBM). Recently, lithium-ion batteries are being mixed with small particles on the active material to increase the capacity and energy density during the electrode design stage. The change to the mixing ratio may influence the wettability of electrolyte. In this study, the changes in electrolyte distribution and saturation were investigated according to various mixing ratios of active material. We found that the variations in mixing ratio of active material affect the wetting mechanism, and result in changes to the wetting speed and wettability of electrolyte.

키워드

참고문헌

  1. Park, J.K., 2010, "Principles and Applications of Lithium Secondary Batteries," Hongrung Pub. Co.
  2. Wu, M.-S., Liao, T.-L., Wang, Y.-Y. and Wan, C.-C., 2004, "Assessment of the Wettability of Porous Electrodes for Lithium-Ion Batteries," J. Appl. Electrochem., Vol. 34, pp. 797-805. https://doi.org/10.1023/B:JACH.0000035599.56679.15
  3. Zguris, G.C., 2000, "Fluid-Transfer Properties of Recombinant Battery Separator Media," J. Power Sources, Vol. 88, pp. 36-43. https://doi.org/10.1016/S0378-7753(99)00508-X
  4. Culpin, B., 1995, "Separator Design for Valve-Regulated Lead/Acid Batteries," J. Power Sources, Vol. 53, pp. 127-135. https://doi.org/10.1016/0378-7753(94)01982-2
  5. Lee, S.G., Jeon, D.H., Kim, B.M., Kang, J.H. and Kim, C.-J., 2013, "Lattice Boltzmann Simulation for Electrolyte Transport in Porous Electrode of Lithium Ion Batteries," J. Electrochem. Soc., Vol. 160, pp. H258-H265. https://doi.org/10.1149/2.017306jes
  6. Lee, S.G. and Jeon, D.H., 2014, "Numerical Study of Electrolyte Wetting Phenomena in the Electrode of Lithium Ion Battery Using Lattice Boltzmann Method," Trans. Korean Soc. Mech. Eng. B., Vol. 38, No 4, pp. 357-363. https://doi.org/10.3795/KSME-B.2014.38.4.357
  7. Lee, S.G. and Jeon, D.H., 2014, "Effect of Electrode Compression on the Wettability of Lithium-Ion Batteries," J. Power Sources, Vol. 265, pp. 363-369. https://doi.org/10.1016/j.jpowsour.2014.04.127
  8. Shan, X. and Chen, H., 1993, "Lattice Boltzmann Model for Simulating flows with Multiple Phases and Components," Phys. Rev. E, Vol. 47, pp. 1815-1819. https://doi.org/10.1103/PhysRevE.47.1815
  9. Shan, X. and Chen, H., 1994, "Simulation of Nonideal Gases and Liquid-gas Phase Transitions by the Lattice Boltzmann Equation," Phys. Rev. E, Vol. 49, pp. 2941-2948. https://doi.org/10.1103/PhysRevE.49.2941
  10. Zou, Q. and He, X., 1997, "On pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model," Phys. Fluids, Vol. 9, pp. 1591-1598. https://doi.org/10.1063/1.869307