DOI QR코드

DOI QR Code

바이오매스(우드펠릿) 혼소율 및 입자크기에 따른 연소 특성에 관한 연구

Experimental Investigation into the Combustion Characteristics on the Co-firing of Biomass with Coal as a Function of Particle Size and Blending Ratio

  • 락와더르지 (부산대학교 기계공학부) ;
  • 김상인 (부산대학교 기계공학부) ;
  • 임호 (부산대학교 기계공학부) ;
  • 이병화 (두산중공업 보일러 R&D센터 PLM팀) ;
  • 김승모 (부산대학교 화력발전에너지분석기술센터) ;
  • 전충환 (부산대학교 기계공학부)
  • Sh, Lkhagvadorj (Graduate School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Kim, Sang-In (Graduate School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Lim, Ho (Graduate School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Lee, Byoung-Hwa (PLM team, Boiler R&D center, Doosan Heavy Industries & Construction, LTD.) ;
  • Kim, Seung-Mo (Pusan Clean Coal Center, Pusan Nat'l Univ.) ;
  • Jeon, Chung-Hwan (Graduate School of Mechanical Engineering, Pusan Nat'l Univ.)
  • 투고 : 2015.06.17
  • 심사 : 2015.11.10
  • 발행 : 2016.01.01

초록

최근 바이오매스와 석탄의 혼소 기술이 화력 발전의 주요한 연소 기술 중 하나로 떠오르고 있다. 그러나 혼소는 실제 발전용 보일러 적용시 많은 검증들을 필요로 한다. 본 연구에서는 바이오매스 혼소시 연소 특성을 알아보기 위해 열중량 분석기(Thermogravimetric analyzer, TGA)와 하향분류층 반응기(Drop tube furnace, DTF)를 사용하였으며, TGA의 TG/DTG 분석을 통한 반응성과 DTF를 이용한 UBC를 측정하여 연소 특성을 분석하였다. 특히 석탄과 바이오매스 혼소율(Biomass blending ratio) 및 바이오매스 입자 크기 변화에 따른 특성을 분석하였다. 그 결과, 바이오매스의 혼소율이 증가함에 따라 산소 부족으로 인한 반응 특성이 나타났으며, 이는 바이오매스가 가진 초기의 빠른 연소 특성 때문이다. 또한, 본 연구 결과를 통해 바이오매스의 최적 혼소 조건(UBC 발생량 기준)은 5%로 나타났으며, 산소 부화 조건은 바이오매스 혼소시 발생하는 산소 부족 현상을 저감시켜 미연분 상승을 완화시켜줄 수 있다.

Co-firing of biomass with coal is a promising combustion technology in a coal-fired power plant. However, it still requires verifications to apply co-firing in an actual boiler. In this study, data from the Thermogravimetric analyzer(TGA) and Drop tube furnace(DTF) were used to obtain the combustion characteristics of biomass when co-firing with coal. The combustion characteristics were verified using experimental results including reactivity from the TGA and Unburned carbon(UBC) data from the DTF. The experiment also analyzed with the variation of the biomass blending ratio and biomass particle size. It was determined that increasing the biomass blending ratio resulted in incomplete chemical reactions due to insufficient oxygen levels because of the rapid initial combustion characteristics of the biomass. Thus, the optimum blending condition of the biomass based on the results of this study was found to be 5 while oxygen enrichment reduced the increase of UBC that occurred during combustion of blended biomass and coal.

키워드

참고문헌

  1. Khan, A. A., Jong, W. D., Jansens, P. J. and Spliethoff, H., 2008, "Biomass Combustion in Fluidized Bed Boilers: Potential problems and remedies," Fuel Processing Technology, Vol. 90, No. 1, pp. 21-50. https://doi.org/10.1016/j.fuproc.2008.07.012
  2. Narayanan, K. V. and Natarajan, E., 2007, "Experimental Studies on Co-firing of coal and Biomass Blends in India," Renewable Energy, Vol. 32, No. 15, pp. 2548-2558. https://doi.org/10.1016/j.renene.2006.12.018
  3. Obernberger, I., 1998, "Decentralized Biomass Combustion: State of the Art and Future Development," Biomass and Bioenergy, Vol. 14, No. 1, pp. 33-56. https://doi.org/10.1016/S0961-9534(97)00034-2
  4. Andrea, S., Corrado, C., Paolo, M., Francesca, A., Federico, P., Michela, Z., Stefano, G. and Raffaele, C., 2015, "A Multivariate SIMCA Index as Discriminant in Wood Pellet Quality Assessment," Renewable Energy, Vol. 76, pp. 258-263. https://doi.org/10.1016/j.renene.2014.11.041
  5. Munir, S., 2010, "A Review on Biomass Coal Co-Combustion: Current State of Knowledge," Proc. Pakistan Acad. Sci, Vol. 47, No. 4, pp. 265-287.
  6. Gani, A., Morishita, K., Nishikawa, K. and Naruse, I., 2005, "Characteristics of Co-combustion of Low-rank Coal with Biomass," Energy and Fuels, Vol. 19, No. 4, pp. 1652-1659. https://doi.org/10.1021/ef049728h
  7. Paulrud, S. and Nilsson, C., 2004, "The effects of Particle Characteristics on Emissions from Burning Wood Fuel Powder," Fuel, Vol. 83, pp. 813-821. https://doi.org/10.1016/j.fuel.2003.10.010
  8. Lu, G., Yan, Y., Cornwell, S., Whitehouse, M. and Riley, G., 2008, "Impact of Co-firing Coal and Biomass on Flame Characteristics and Stability," Fuel, Vol. 87, pp. 1133-1140. https://doi.org/10.1016/j.fuel.2007.07.005
  9. Molcan, P., Lu, G., Birs, L. T., Yan, Y., Taupin, B. and Caillat, S., 2009, "Characterization of Biomass and Coal Co-firing on a 3MWth Combustion Test Facility using Flame Imaging and Gas/ash Sampling Techniques," Fuel, Vol. 88, No. 12, pp. 2328-2334. https://doi.org/10.1016/j.fuel.2009.06.027
  10. Sami, M., Annamalai, K. and Wooldridge, M., 2001, "Co-firing of Coal and Biomass Fuel Blends," Progress in Energy and Combustion Science, Vol. 27, No. 2, pp. 171-214. https://doi.org/10.1016/S0360-1285(00)00020-4
  11. Seo, D.-K., Park, S.-S., kim, Y.-T., Hwang, J.-H. and Yu, T.-U., 2009, "Study on Co-pyrolysis of Biomass/Coal using Thermo-gravimetric Analysis (TGA)," KOSCO Symposium, Vol. 39, pp. 209-214.
  12. Vamvuka, D., Kastanaki, E. and Lasithiotakis, M., 2003, "Devolatilization and Combustion Kinetics of Low-rank Coal Blends from Dynamic Measurements," Ind. Eng. Chem. Vol. 42, No. 20, pp. 4732-4740. https://doi.org/10.1021/ie020758m
  13. Sahu, S. G., Sarkar, P., Chakraborty, N. and Adak, A. K., 2010, "Thermogravimetric Assessment of Combustion Characteristics of Blends of a Coal with Different Biomass Chars," Fuel Processing Technology, Vol. 91, No. 3, pp. 369-378. https://doi.org/10.1016/j.fuproc.2009.12.001