DOI QR코드

DOI QR Code

풍력터빈 후류 유동특성 측정 데이터를 이용한 Eddy Viscosity 및 Lange 후류모델의 예측 정확도 검증

Validation of the Eddy Viscosity and Lange Wake Models using Measured Wake Flow Characteristics Behind a Large Wind Turbine Rotor

  • Jeon, Sang Hyeon (Faculty of Wind Energy Engineering Graduate School, Jeju Nat'l Univ.) ;
  • Go, Young Jun (Hanjin IND. CO., LTD.) ;
  • Kim, Bum Suk (Faculty of Wind Energy Engineering Graduate School, Jeju Nat'l Univ.) ;
  • Huh, Jong Chul (Faculty of Mechanical Engineering, Jeju Nat'l Univ.)
  • 투고 : 2015.06.01
  • 심사 : 2015.11.20
  • 발행 : 2016.01.01

초록

상업용 풍력발전단지에 설치된 기상 탑의 측정데이터와 풍력터빈의 SCADA(Supervisory Control and data Acquisition) 데이터를 이용하여 풍력터빈의 후류영향을 분석하고 후류 풍속저감 예측을 위한 eddy viscosity 모델 및 난류강도 예측을 위한 Lange 모델의 계산값과 비교하였다. 후류영향 분석결과, 자유단(free stream) 풍속이 낮을수록 풍력터빈 후류에서의 풍속 감소율은 증가하였으며 후류 난류강도 역시 자유단 풍속이 낮아질수록 증가하는 특징을 보였다. Eddy viscosity 모델에 의해 예측된 풍력터빈 후류중심에서의 풍속 감소율은 측정값에 비해 과대 예측되었으며 Lange 모델에 의한 후류 난류강도 예측은 실측값과 유사하게 예측되고 있음을 보였다.

The wake effects behind wind turbines were investigated by using data from a Met Mast tower and the SCADA (Supervisory Control and Data Acquisition) system for a wind turbine. The results of the wake investigations and predicted values for the velocity deficit based on the eddy viscosity model were compared with the turbulence intensity from the Lange model. As a result, the velocity deficit and turbulence intensity of the wake increased as the free stream wind speed decreased. In addition, the magnitude of the velocity deficit for the center of the wake using the eddy viscosity model was overestimated while the turbulence intensity from the Lange model showed similarities with measured values.

키워드

참고문헌

  1. Sorensen, T., Nielsen, P. and Thogersen, M. L., 2008, "Adapting and Calibration of Existing Wake Models to Meet the Conditions Inside Offshore Wind Farms," EMD International A/S.
  2. Machielse, L. A. H., Eecen, P. J., Korterink, H., van der Pijl, S. P. and Schepers, J. G., 2007, "ECN Test Farm Measurements for Validation of Wake Models," Tech. Report, ECN-M--07-044, Energy research Center of the Netherlands.
  3. Schepers, J. G., Obdam, T. S. and Prospathopoulos, J., "Analysis of Wake Measurements from the ECN Wind Turbine Test Site Wieringermeer, EWTW," Tech. Report, Energy research Center of the Netherlands.
  4. DEWI, "Wake Measurements at Alpha Ventus - Dependency on Stability and Turbulence Intensity," Tech. Report for RAVE-OWEA project, DEWI.
  5. Katic, I., Hojstrup, J. and Jensen, N. O., 1986, "A Simple Model for Cluster Efficient," EWEA conference, pp. 407-410.
  6. Larsen, G. C., 2009, "A Simple Stationary Semianalytical Wake Model," Tech. Report, Riso-R- 1713(EN), Riso National Laboratory.
  7. Ott, S., Berg, J. and Nielsen, M., 2011, "Linearised CFD models for wakes," Tech. Report, Riso-R- 1772(EN), Riso National Laboratory.
  8. Gaumond, M., Rethore, P.-E., Bechmann, A., Ott, S., Larsen, G. C., Pena, A. and Hansen, K. S., "Benchmarking of Wind Turbine Wake Models in Large Offshore Wind farms," DTU Wind Energy.
  9. Windographer user manual, AWS Truepower.
  10. Ainslie, J.F., 1985, "Development of an Eddy Viscosity Model for Wind Turbine Wake," in 7th BWEA Wind Energy Conference.
  11. Ainslie, J.F., 1988, "Calculation the Flow Field in the Wake of Wind Turbines," Journal of Wind Engineering and Industrial Aerodynamics, vol. 27.
  12. Wessel, A. and Lange, B., "Modeling Turbulence Intensities Inside Offshore Wind Farms"
  13. Anderson, M., 2009, "Simplified Solution to the Eddy-Viscosity Wake Model," Tech. Report, 01327- 000202, Renewable Energy Systems Ltd (REC).
  14. International Electrotechnical Commission, 2005, INTERNATIONAL STANDARDIEC 61400-1 Third edition.