• 제목/요약/키워드: femoral stem

검색결과 41건 처리시간 0.025초

유한요소법을 이용한 인공고관절 주대형태의 개선에 대한 연구 (A Study for Improvement of the Femoral Stem Type using the Finite Element Analysis)

  • 윤경렬;원예연;이수훈
    • 한국CDE학회논문집
    • /
    • 제5권2호
    • /
    • pp.122-126
    • /
    • 2000
  • A major mechanical problem with total hip replacement is the loosening of the femoral component. The loss of proximal support, with firm fixation distally, has been thought to be a major caused of fatigue failure of femoral stems. While many causes have been proposed, the most frequently suggested cause of the calcar resorption is the disuse atrophy of the cortex of the calcar due to the stress shielding of the proximal bone by the metal femoral stem. In this research, the new-designed stem(modified collar stem) was considered which made a hole inside stem and had a 3 mm thickness. Using the 3-dimensional finite element methods, the common collar stem and the modified colla stem was modeled and analysed. Also, the two models was compared. The results showed that the modified collar stem decreased the stress-shielding and it made a effective load transfer at the entire femoral region.

  • PDF

인공고관절 치환술에서 대퇴주대 회전에 따른 시멘트막 두께 변화 (Change of the Cement Mantle Thickness According to the Movement of the Femoral Stem in THRA)

  • 박용국;김진곤
    • 한국정밀공학회지
    • /
    • 제24권2호
    • /
    • pp.140-148
    • /
    • 2007
  • THRA(Total Hip Replacement Arthroplasty) has been widely used for several decades as a viable treatment of otherwise-unsolved hip problems. In THRA surgery, cement mantle thickness is critical to long-term implant survival of femoral stem fixed with cement. Numerous studies reported thin or incomplete cement mantle causes osteolysis, loosening, and the failure of implant. To analyze the effect of femoral stem rotation on cement thickness, in this study, we select two most popular stems used in THRA. Using CAD models obtained from a 3D scanner, we measure the cement mantle thickness developed by the rotation of a femoral stem in the virtual space created by broaching. The study shows that as the femoral stem deviates from the target coordinates, the minimum thickness of cement decreases. Therefore, we recommend development of a new methodology for accurate insertion of a femoral stem along the broached space. Also, modification of the stem design robust to the unintentional movement of a femoral stem in the broached space, can alleviate the problem.

Stress Analysis of Femoral Stems on Non-Cemented Total Hip Replacement - A Three-Dimensional Finite Element Analysis -

  • Kim, Sung-Kon;Chae, Soo-Won;Jeong, Jung-Hwan
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.263-266
    • /
    • 1997
  • Three dimensional numerical model based on the finite element method(FEM) were developed to predict the mechanical behavior of hip implants. The purpose of this study is to investigate the stress distribution of two types of cementless total hip replacement femoral component -a straight stem and a curved stem, and to compare their effect on the stress shielding between two types by three dimensional finite element method. The authors analyzed von Mises stress in the cortex & stem and compared the stress between the straight and the curved stem. In comparison of stresses between two different design of femoral stem, there was 25% more decrease of stress in straight stem than curved stem in the medial cortex at proximal region. The straight stem had consistently much lower stresses than the curved stem throughout the whole medial cortex with maximum 70% reduction of stress. However, there was little change in stress between nature and 2 implanted femur throughout the lateral cortex. Stress of femoral stem was much higher in the straight stem than the curved stem up to 60%. The straight stem had more chance of stress shielding and a risk of fatigue fracture of the stem compared with the curved stem in noncement hip arthroplasty. In design of femoral stem still we have to consider to develop design to distribute more even stress on the proximal medial cortex.

  • PDF

시멘트-대퇴Stem 경계면 해리가 골-시멘트 경계면에 미치는 응력 분석 -3차원 비선형 Finite Element Analysis- (Stress analysis of the effect of debonding of cement-femoral stem interface to the bone-cement interface -A three-dimensional Finite Element Analysis-)

  • 김성곤
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1996년도 추계학술대회
    • /
    • pp.337-346
    • /
    • 1996
  • Debonding of cement-femoral stem interface has been suggested as a initial focus of loosening mechanism in many previous studies of cemented total hip replacement. The purpose of this study was to investigate the effect of debonding of cement-femoral stem interface to the bone-cement interface by using three-dimensional non-liner finite element analysis. Three cases of partial debonded, full debonded, full bonded cement-bone interface were modelled with partial bonding of distal 70mm from the tip of femoral stem. Each situation was studied under loading stimulating one-leg stanced gait of 68kg patient. The results showed that under partial and full debonded cement-stem interface condition the peak von Mises stress(3.1 MPa) were observed at the cement of bone-cement interface just under the calcar of proximal medial of femur, and sudden high peak stresses(3.5MPa) were developed at the distal tip of femoral stem at the lateral bone-cement interface in all 3 cases of bonding. The stresses were transfered very little to the cement of upper lateral bone-cement interface in partial and full debonded cases. Thus, once partial or full debonded cement-femoral stem interface occured, 3 times higher stress concentration were developed on the cement of proximal medial bone-cement interface than full bonded interface, and these could cause loosening of cemented total hip replacement. Clinically, preservation of more rigid cement-femoral stem interface may be important factor to prevent loosening of femoral stem.

  • PDF

무시멘트형 대퇴스템에서 원위부 압박 정도에 따른 생체역학적 특성 (Biomechanical characteristics of the distal filling effects in cementless femoral stem)

  • 박상석;박재원;채수원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.387-392
    • /
    • 2000
  • In cementless total hip replacement(THR), an initial stability of the femoral component is important to long term fixation of femoral stem. The initial stability has close relationship with the relative displacement of prosthesis and spongy bone at the proximal of femur. After implantation of the prosthesis. the surrounding bone is partially shielded from load carrying and starts to resort. Stress shielding is the cause of the loss of proximal bone. Assessing stress distribution of femur is important to predict stress shielding. The initial stability and the stress shielding were investigated for two loading conditions approximating a single leg stance and a stair climbing. Three types of stems were studied by the finite element method to analyze the biomechanical effects of distal filling of cementless femoral stems, Three types of stems employed are a distal filling stem, a distal flexible stem, and a distal tapered stem.

  • PDF

Correlation between anterior thigh pain and morphometric mismatch of femoral stem

  • Chung, Haksun;Chung, So Hak
    • Journal of Yeungnam Medical Science
    • /
    • 제37권1호
    • /
    • pp.40-46
    • /
    • 2020
  • Background: Postoperative pain occurring after hip arthroplasty has become common since the expanded use of cementless femoral stems. The characteristic pain develop in the anterolateral thigh area. This study aimed to predict anterior thigh pain based on the measurements of postoperative anteroposterior (AP) and lateral (Lat) radiographs of the hip joint. Methods: The present study included 26 patients (29 hips) who underwent total hip replacement or bipolar hemiarthroplasty between March 2010 and May 2016, whose complete clinical information was available. AP and Lat radiographs of the affected hip were taken on the day of surgery and 1 and 6 months postoperatively. Patients with improper radiographs were excluded. The distance from the femoral stem to the nearest cortical bone in the distal region of the stem was measured. The patient group with a visual analog scale (VAS) score of ≥6 points was designated as patients with anterior thigh pain. Results: Sex, age, weight, height, body mass index, and bone mineral density in the lumbar spine and femur did not have a significant effect on postoperative VAS scores (p>0.05). Presence of contact between the femoral stem and cortical bone was associated with postoperative anterior thigh pain. Conclusion: Hip AP and Lat radiographs are usually taken to confirm fixation and alignment of the femoral stem after hip arthroplasty. The measurement method introduced in this study can be utilized for predicting anterior thigh pain after hip arthroplasty.

대퇴골 근위부 골흡수가 인공 고관절 대퇴 stem에 미치는 응력에 관한 연구-FEM을 이용한 분석 (A Finite Element Analysis of Stress on the Femoral Stem with Resorption of Proximal Medial Femur after Total Hip Replacement)

  • 김성곤
    • 대한의용생체공학회:의공학회지
    • /
    • 제15권2호
    • /
    • pp.183-188
    • /
    • 1994
  • In clinical orthopaedics, bone resoption in the cortex is often seen post operatively on X-rays or bone densitometry after total hip replacement (THR) in the form of cortical osteoporosis or atropy. Stress shielding of bone occurs, when a load, normally carried by the bone alone, is shared with an implant as a result, the bone stresses are abnormal and with remodelling analysis this may cause extensive proximal bone resoption, possibly weakening the bone bed to the point of failure. The author made finite element models of the cemented and non-cemented type implanted femoral stem with bone resorption of the proximal medial femur and studied the feed back effect of the various degree of bone resoption to THR system by parametric analysis on the stress of the femoral stem and interface. The results of the present finite element analysis implied that the extent of proximal bone resorption has the effect of more increasing stress on the distal stem tip, cement mantle and interface in both type of femoral stem and this high distal stress possibly can cause the mechanical failure of loosening or failure after THR.

  • PDF

인공 고관절 대치술에서 무시멘트형 스템의 원위부 압박이 고관철 성능에 미치는 영향 (The Distal Filling Effects on Hip Jont Function in Cementless Total Hip Replacement)

  • 채수원;박상석;박재원
    • 대한기계학회논문집A
    • /
    • 제24권11호
    • /
    • pp.2777-2785
    • /
    • 2000
  • In cementless total hip replacement(THR), an initial stability of the femoral component is important to long term fixation of femoral stem. The intial stability has close relationship with the relative displacement of prosthessis and sponge bone at the proximal of femur. After implantation of the proshesis, the surrounding bone is partially shielded from load carrying and starts to resorb. Stress shielding is the cause of the loss of proximal bone. Assessing stress distribution of femur is important to predict stress shielding. The initial stability and the stress shielding were investigated for two loading conditions approximating a single leg stance and a stair climbing. Three types of stems were studied by the finite element method to analyze the biomechanical effects of distal filling of cementless femoral stems. Three types of stems empolyed are a distal filling stem, a distal flexible stem, and a distal tapered stem.

Measures of micromotion in cementless femoral stems-review of current methodologies

  • Solitro, Giovanni F;Whitlock, Keith;Amirouche, Farid;Santis, Catherine
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제3권2호
    • /
    • pp.85-104
    • /
    • 2016
  • Stability and loosening of implanted femoral stems in Total Hip Replacement have been well established as barriers to the primary concerns of osseointegration and long term implant survival. In-vitro experiments and finite element modeling have for years been used as a primary tool to assess the bone stem interface with variable methodologies leading to a wide range of micromotion, interference fit and stress shielding values in the literature. The current study aims to provide a comprehensive review of currently utilized methodologies for in-vitro mechanical testing as well as finite element modeling of both micromotion and interference of implanted femoral stems. A total of 12 studies detailed in 33 articles were selected for inclusion. Experimental values of micromotion ranged from 12 to $182{\mu}m$ while finite element analysis reported a wider range from 2.74 to $1,277{\mu}m$. Only two studies were found that modeled bone/implant contact with consideration for interference fit. In studies evaluating stem micromotion in THA, the reference surface at the bone/stem interface should be well defined. Additionally, the amount of penetration considered should be disclosed and associated with bone density and roughness.

Biomechanical Finite Element Analysis of Bone Cemented Hip Crack Initiation According to Stem Design

  • Kim, Byeong-Soo;Moon, Byung-Young;Park, Jung-Hong
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2168-2177
    • /
    • 2006
  • The purpose of this investigation was to determine the specific fracture mechanics response of cracks that initiate at the stem-cement interface and propagate into the cement mantle. Two-dimensional finite element models of idealized stem-cement-bone cross-sections from the proximal femur were developed for this study. Two general stem types were considered; Rectangular shape and Charnley type stem designs. The FE results showed that the highest principal stress in the cement mantle for each case occurred in the upper left and lower right regions adjacent to the stem-cement interface. There was also a general decrease in maximum tensile stress with increasing cement mantle thickness for both Rectangular and Charnley-type stem designs. The cement thickness is found to be one of the important fatigue failure parameters which affect the longevity of cemented femoral components, in which the thinner cement was significantly associated with early mechanical failure for shot-time period.