DOI QR코드

DOI QR Code

투수성 아스팔트 포장에 대한 우려와 실제: 구조적 적합성, 홍수 완화 그리고 비점오염 저감

Worries and Reality Regarding Porous Asphalt Pavements: Structural Integrity, Flood Mitigation and Non-Point Pollution Reduction

  • 유인균 (한국건설기술연구원 도로연구소) ;
  • 이수형 (한국건설기술연구원 도로연구소) ;
  • 한대석 (한국건설기술연구원 도로연구소) ;
  • 이상혁 (한국건설기술연구원 도로연구소)
  • Yoo, Inkyoon (Highway Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Suhyung (Highway Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Han, Daeseok (Highway Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Sanghyuk (Highway Research Institute, Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2016.10.02
  • 심사 : 2016.12.20
  • 발행 : 2016.12.31

초록

투수성 포장은 도시에서 불투수면 증가에 따라 발생하는 환경문제에 대응하기 위한 대표적인 저영향개발 (Low-Impact Development, LID) 기법의 하나이다. 도시의 도로가 투수성 포장으로 바뀐다면 도시의 불투수면이 약 절반으로 줄어들고, 더 나가 지붕으로부터의 강수 유출까지 수용할 수 있다면 도로는 도시 물 순환 문제의 원인자에서 해결자로 전환될 수 있다. 그러나 국내에서는 경험과 인식의 부족으로 투수성 포장을 적용하는 경우가 거의 없는 실정이다. 도로 포장을 설계, 시공 및 관리하는 도로 기술자는 전통적으로 포장 구조에 물이 들어가는 것을 피하려 하고, 수자원 전문가는 투수성 포장의 도시홍수 저감효과에 대해서 의문을 가진다. 본 연구에서는 국내외의 다양한 연구 결과를 검토하여 투수성 포장에 대한 역사와 최신 기술을 분석하였다. 최신의 투수성 포장 기술을 요약하면 다음과 같다. 첫째, 투수성 포장은 기존의 방법대로 설계해도 노상 약화와 동결 융해로 인한 구조적인 문제가 없다. 둘째, 투수성 포장의 저수층 두께의 조절로 도시수문 설계에 직접 반영할 수 있다. 셋째, 기존의 다른 비점오염 처리시설에 비하여 수질처리 효과가 떨어지지 않는다. 특히 투수성 포장은 겨울철 제설제 사용을 저감하여 보다 친환경적이다.

Porous pavements are recommended as a Low-Impact Development (LID) method which is a strategy to develop a water cycle as close to a natural state as possible, and to solve the urban impervious surface problems. Porous pavements can yield a solution if it provides a more permeable surface with extra space to contain extra water from building roofs. But there are few applications in Korea because of a lack of recognition and experience. Highway engineers are mainly concerned about the infiltration of water into pavement structures. They worry about the weakening of the asphalt mixture and subgrade, and freezing during the winter season due to the infiltration of water. Meanwhile, hydrological experts doubt the effects of the amount of water to control during the flooding season, and environmental experts prefer a non-point pollution treatment system established beside highway. In this study, from reviewing the history and the body of literature about porous pavements, conclusions regarding the most advanced technologies were made. First, traditional thickness designs can be used for porous pavement, no extra distresses was found by weakening and freezing during the winter season. Second, hydrological design can be made by controlling the thickness of the pavement and the outlet of water. Third, the treatment efficiency of non-point pollution of porous pavements is not worse than any other method. Importantly, it's a more eco-friendly solution because of its lower requirement for de-icing agents.

키워드

참고문헌

  1. Ferguson, B.K. 2005. Porous Pavement. CRC Press, New York, USA.
  2. Ha, J.-D. and Ha, S.-O. 2000. Mixture design and construction application. The Magazine of the Korean Society of Road Engineers 8(2): 65-73. (in Korean)
  3. Han, S.-W. 2006. Pervious pavement method for reduction of traffic noise. The Magazine of the Korean Society of Road Engineers 8(4): 37-41. (in Korean)
  4. Houle, K.M. 2008. Winter Performance Assessment of Permeable Pavements. MS Thesis, University of New Hampshire, Durham, New Hampshire, USA.
  5. Imamichi, I., Suzuki, S. and Sirahama, K. 2007. Pervious pavement past 10 years. The 27th Japan Highway Conference of Japan Society of Road Engineering, Tokyo, Japan. (in Japanese)
  6. JRA. 2007. Guidebook for Pervious Pavements. Pavement Construction and Design Committee, Japan Road Association, Tokyo, Japan. (in Japanese)
  7. Kinouchi, T., 2004. Improvement and Effects of Urban Water Cycle, New Trial in Roads and Pavements for Improvement of Urban Environment. Construction Books, Tokyo, Japan. (in Japanese)
  8. McNichol, D. 2005. Paving the Way: Asphalt in America. National Asphalt Pavement Association, New York, USA.
  9. MOE. 2013. Guidelines for Optimum Management of Non-Point Pollution. Ministry of Environment, Sejong, Korea. (in Korean)
  10. Mori, N., Matsshita, T., Hurukawa, M. and Kikutsi, T. 2003. Application of Pervious Pavement in Traffic Roads: New Trial in Roads and Pavements for Improvement of Urban Environment. Construction Books, Tokyo, Japan. (in Japanese)
  11. NAPA. 2008. Porous Asphalt Pavements for Storm Water Management: Design, Construction and Maintenance Guide. National Asphalt Pavement Association, Lanham, Maryland, USA.
  12. NEMA. 2010. Guideline of Types, Installation and Maintenance of Structures for Reducing Storm Water Runoff. National Emergency Management Agency, Seoul, Korea. (in Korean)
  13. Nicholls, C. 1998. Asphalt Surfacings. E & FN Spon, London, UK
  14. Park, Y.-M. and Kim, K.-M. 2015. A study on traffic noise reduction of porous low noise pavement. The Fall Conference of Korea Society of Cement Concrete. pp. 711-712. (in Korean)
  15. Weiss, P.T., Kayhanian, M., Khazanovich, L. and Gulliver, J.S. 2015. Permeable Pavements in Cold Climates: State of the Art and Cold Climate Case Studies. Center for Transportation Studies, University of Minnesota, Minneapolis, USA.