DOI QR코드

DOI QR Code

Topology Optimization for Plane Structures using Isogeometric Approach

등기하해석법을 적용한 평면구조물의 위상최적화

  • 박경임 (경상대학교 대학원 계산역학연구실) ;
  • 이상진 (경상대학교 건축공학과)
  • Received : 2015.09.09
  • Accepted : 2016.02.14
  • Published : 2016.02.29

Abstract

In this paper, the isogeometric topology optimization (TO) technique is presented for plane structures. Isogeometric concept uses the same NURBS basis functions for both the computer-aided geometric design (CAGD) representation and the field functions. Therefore, the exact geometric models are naturally used in TO process. In addition, the NURBS basis functions are consistently used as the material distribution functions. Since the point-wise design variables are adopted, the proposed TO technique is completely free from checker boarding phenomenon without additional constraints or a filtering technique. The validity and applicability of the presented TO technique are demonstrated by solving TO problems for plane structures and we also investigate the effect of isogeometric analysis parameters to the optimum topology.

Keywords

References

  1. Bae, J. E., Lee, S. J. & Kim, Y. B. (1997). Topology optimization for plane problem, Journal of the Architectural Institute of Korea, 13, 216-227.
  2. Bendsoe, M. P. & Kikuchi, N. (1988). Generating optimal topologies in structural design using homogenization method, Computer Methods in Applied Mechanics Engineering, 71, 197-224. https://doi.org/10.1016/0045-7825(88)90086-2
  3. Bourdin, B. (2001). Filters in topology optimization, International Journal for Numerical Methods in Engineering, 50, 2143-2158. https://doi.org/10.1002/nme.116
  4. de Boor (1978). A Practical Guide to Splines, Springer-Verlag, New York.
  5. Dede, L., Broden, M. J., & Hughes, T. J. R. (2012). Isogeometric analysis for topology optimization with a phase field model, Arch. Coumput. Methods Eng., 19, 427-465. https://doi.org/10.1007/s11831-012-9075-z
  6. Gomes F. A. M. & Senne T. A. (2011). An SLP algorithm and its application to topology optimization. Computational and Applied Mathematics, 30, 53-89.
  7. Guest, J. K., Prevost, J. H. & Belytschko, T. (2004). Achieving minimum length scale in topology optimization using nodal design variables and projection functions, International Journal for Numerical Methods in Engineering, 61, 238-254. https://doi.org/10.1002/nme.1064
  8. Hassani, B., Khanzadi, M. & Tavakkoli, S. M. (2012). An isogeometric approach to structural topology optimization by optimality criteria, Structural and Multidisciplinary Optimization, 45, 223-233. https://doi.org/10.1007/s00158-011-0680-5
  9. Hughes, T. J. R., Cottrell, J. A. & Bazileves, Y. (2005). Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement, Computer Methods in Applied Mechanics and Engineering, 194, 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008
  10. Kane, C. & Schoenauer, M. (1996), Topological Optimum Design using Genetic Algorithms, Control and Cybernetics, 25, 1059-1088.
  11. Kumar, A. V. & Parthasarathy, A. (2011). Topology optimization using B-spline finite elements, Structural and Multidisciplinary Optimization, 44, 471-481. https://doi.org/10.1007/s00158-011-0650-y
  12. Lee, S. J. (2003). Topology optimization of plane structures with multiload case, Journal of Computational Structural Engineering Institute of Korea, 16, 59-67
  13. Lee, S. J. (2014). Free vibration analysis of thin shells using isogeometric approach, Architectural Research, 16, 67-74. https://doi.org/10.5659/AIKAR.2014.16.2.67
  14. Lee, S. J. & Kim, H. R. (2012). Analysis of plates using isogeometric approach based on Reissner-Mindlin Theory, Journal of the Architectural Institute of Korea, 28, 75-82.
  15. Lee, S. J. & Kim, H. R. (2013) Vibration and buckling of thick plates using isogeometric approach, Architectural Research, 15, 35-42. https://doi.org/10.5659/AIKAR.2013.15.1.35
  16. Lee, S. J. & Park, G. I. (2013). A matlab code for structural topology optimization, Journal of the Architectural Institute of Korea, 29, 11-18.
  17. Lee, S. J. & Park, K. S. (2011). Free vibration analysis of elastic bars using isogeometric approach, Architectural Research, 13, 41-47. https://doi.org/10.5659/AIKAR.2011.13.3.41
  18. Lee, S. J. & Park, K. S. (2013). Vibrations of Timoshenko beams with isogeometric approach, Applied Mathematical Modelling, 37, 9174-9190 https://doi.org/10.1016/j.apm.2013.04.034
  19. Long, C. (2007). Finite element developments and applications in structural topology optimization, Ph.D. Thesis, Mechanical Engineering, University of Pretoria.
  20. Matsui, K. & Terada, K. (2004). Continuous approximation of material distribution for topology optimization, International Journal for Numerical Methods in Engineering, 59, 1925-1944. https://doi.org/10.1002/nme.945
  21. Nguyen, V. P., Simpson, R., Bordas, S. P. A., & Rabczuk, T. (2015). Isogeometric analysis: An overview and computer implementation aspects, Advances in Engineering Softwares, 117, 89-116.
  22. Park, K. S. & Lee, S. J. (2014). Linear analysis of continuum shell using isogeometric degenerated shell element, Journal of the Architectural Institute of Korea, 30, 3-10
  23. Paulino, G. H. & Le, C. H. (2009). Modified Q4/Q4 element for topology optimization, Structural and Multidisciplinary Optimization, 37, 255-264. https://doi.org/10.1007/s00158-008-0228-5
  24. Qian, X. (2013). Topology optimization in B-spline space, Computer Methods in Applied Mechanics Engineering, 265, 15-35. https://doi.org/10.1016/j.cma.2013.06.001
  25. Seo, Y. D., Kim, H. J. & Youn, S. K. (2010). Isogeometric topology optimization using trimmed spline surfaces, Computer Methods in Applied Mechanics Engineering, 199, 3270-3296. https://doi.org/10.1016/j.cma.2010.06.033
  26. Sigmund, O. (2001). A 99 topology optimization code written in Matlab, Structural and Multidisciplinary Optimization, 21, 120-127. https://doi.org/10.1007/s001580050176
  27. Sigmund O. & Petersson J. (1998). Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima, Structural and Multidisciplinary Optimization, 16, 68-75. https://doi.org/10.1007/BF01214002
  28. Youn, S. K. & Park, S. H. (1997). A study on the shape extraction process in the structural topology optimization using homogenization material, Computers and Structures, 62, 527-538. https://doi.org/10.1016/S0045-7949(96)00217-9
  29. Wang, M. Y., Wang, X & Guo, D. (2003). A level set method for structural topology optimization, Computer Methods in Applied Mechanics Engineering, 192, 227-246 https://doi.org/10.1016/S0045-7825(02)00559-5