DOI QR코드

DOI QR Code

Effect of Cu/Al powder mixing on Dy diffusion in Nd-Fe-B sintered magnets treated with a grain boundary diffusion process

입계확산처리된 Nd-Fe-B 소결자석에서 Dy의 확산에 미치는 Cu와 Al 분말의 혼합 효과

  • Lee, Min Woo (Department of Advanced Materials Engineering, Sunmoon University) ;
  • Jang, Tae Suk (Department of Advanced Materials Engineering, Sunmoon University)
  • Received : 2016.11.15
  • Accepted : 2016.12.09
  • Published : 2016.12.28

Abstract

We investigate the microstructural and magnetic property changes of $DyH_2$, $Cu+DyH_2$, and $Al+DyH_2$ diffusion-treated NdFeB sintered magnets with the post annealing (PA) temperature. The coercivity of all the diffusion-treated magnets increases with increasing heat treatment temperature except at $910^{\circ}C$, where it decreases slightly. Moreover, at $880^{\circ}C$, the coercivity increases by 3.8 kOe in Cu and 4.7 kOe in Al-mixed $DyH_2$-coated magnets, whereas this increase is relatively low (3.0 kOe) in the magnet coated with only $DyH_2$. Both Cu and Al have an almost similar effect on the coercivity improvement, particularly over the heat treatment temperature range of $790-880^{\circ}C$. The diffusivity and diffusion depth of Dy increases in those magnets that are treated with Cu or Al-mixed $DyH_2$, mainly because of the comparatively easy diffusion path provided by Cu and Al owing to their solubility in the Nd-rich grain boundary phase. The formation of a highly anisotropic $(Nd,\;Dy)_2Fe_{14}B$ phase layer, which acts as the shell in the core-shell-type structure so as to prevent the reverse domain movement, is the cause of enhanced coercivity of diffusion-treated Nd-Fe-B magnets.

Keywords

References

  1. Y. Kaneko, F. Kuniyoshi and N. Ishigaki: J. Alloys Compd., 408 (2006) 1344.
  2. H. Nakamura, K. Hirota, M. Shimao, T. Minowa and M. Honshima: IEEE Trans. Magn., 41 (2005) 3844. https://doi.org/10.1109/TMAG.2005.854874
  3. K. Hirota, H. Nakamura, T. Minowa and M. Honshima: IEEE Trans. Magn., 42 (2006) 2909. https://doi.org/10.1109/TMAG.2006.879906
  4. D. S. Li, M. Nishimoto, S. Suzuki, K. Nishiyama, M. Itoh and K. Machida: IOP CONF. SER. MATER. SCI. ENG., 1 (2009) 012020.
  5. M. Komuro, Y. Satsu and H. Suzuki: IEEE Trans. Magn., 45 (2010) 3831.
  6. S. Hirosawa, Y. Matsuura, H. Yamamoto, S. Fujimura, M. Sagawa and H. Yamauchi: J. Appl. Phys., 59 (1986) 873. https://doi.org/10.1063/1.336611
  7. D. R. Lide: CRC Handbook of Chemistry and Physics, (Ed) CRC Pres, USA (2000) 1999.
  8. T. N. Rezykhina and T. F. Sioeva: J. Chem. Thermodyn., 11 (1979) 1095. https://doi.org/10.1016/0021-9614(79)90140-X
  9. B. E. Davies, R. S. Mottram and I. R. Harris: J. Mater. Chem. Phys., 64 (2001) 272.
  10. D. W. Park, T. H. Kim, S. R. Lee, D. H. Kim and T. S. Jang: J. Appl. Phys., 107 (2010) 09A737. https://doi.org/10.1063/1.3348479
  11. K. H. J. Buschow: J. Mater. Sci. Res., 1 (1986) 1. https://doi.org/10.1557/JMR.1986.0001
  12. J. Fidler and J. Bernardi: J. Appl. Phys., 70 (1991) 6456 https://doi.org/10.1063/1.349929
  13. W.F. Li, T. Ohkubo, K. Hono and M. Sagawa: J. Magn. Magn. Mater., 321 (2009) 1100. https://doi.org/10.1016/j.jmmm.2008.10.032
  14. S. Namkung, M. W. Lee, I. S. Cho, Y. D. Park, T. H. Lim, S. R. Lee, T. S. Jang: J. Korean Powder Metall. Inst., 18 (2011) 29. https://doi.org/10.4150/KPMI.2011.18.1.029
  15. M. W. Lee, D. R. Dhakal, T. H. Kim, S. R. Lee, H. J. Kim and T. S. Jang: Arch. Metall. Mater., 60 (2015) 1407. https://doi.org/10.1515/amm-2015-0142