DOI QR코드

DOI QR Code

아산화동과 황산간의 고속 화학반응에 의한 미세 Cu 입자의 합성과 삼본밀에 의한 분산성 개선

Synthesis of Cu Nanoparticles through a High-Speed Chemical Reaction between Cuprous Oxide and Sulfuric Acid and Enhancement of Dispersion by 3-Roll Milling

  • 오상주 (서울과학기술대학교 신소재공학과) ;
  • 이종현 (서울과학기술대학교 신소재공학과) ;
  • 현창용 (서울과학기술대학교 신소재공학과)
  • Chee, Sang-Joo (Department of Materials Science & Engineering, Seoul National University of Science and Technology) ;
  • Lee, Jong-Hyun (Department of Materials Science & Engineering, Seoul National University of Science and Technology) ;
  • Hyun, Chang-Yong (Department of Materials Science & Engineering, Seoul National University of Science and Technology)
  • 투고 : 2016.12.23
  • 심사 : 2016.12.29
  • 발행 : 2016.12.30

초록

도전 페이스트의 필러로 사용되기 위한 미세 Cu 입자를 제조하기 위하여 아산화동 분말과 황산간의 고속 화학 반응을 이용한 증류수 기반의 습식 공정으로 Cu 입자의 합성을 실시하였다. $7^{\circ}C$에서 48%의 황산과 30 g의 $Cu_2O$를 사용한 조건에서 미반응 $Cu_2O$ 입자들이 제거되면서 입자들간의 응집이 개선된 순수 Cu 나노입자들이 제조되었다. 이후 최적 첨가제의 선택을 통하여 입자들간의 응집이 가장 억제된 224 nm 크기의 Cu 입자들을 제조할 수 있었다. 이러한 미세 Cu 입자 시료에서는 응집된 형태의 조대 입자들이 다소 존재하였고 입자들간의 연결부도 일부 관찰되었으나, 삼본밀을 사용한 레진 포물레이션과의 혼합 후에는 응집된 형태의 조대 입자들이 파괴되고 입자들간의 연결부들이 탈착되어 입자들의 응집이 풀리는 거동을 관찰할 수 있었다.

With the aim of using a filler material in a conductive paste, fine Cu nanoparticles were synthesized through the high-speed chemical reaction between cuprous oxide ($Cu_2O$) powder and sulfuric acid in distilled water. Under external temperature of $7^{\circ}C$, sulfuric acid concentration of 48%, and $Cu_2O$ amount of 30 g, the $Cu_2O$ particles were eliminated and slightly aggregated Cu nanoparticles were synthesized. Futhermore, Cu nanoparticles of 224 nm, in which the aggregation between particles was obviousiy much suppressed, were synthesized with the choice of an additive. In the particle sample, occasionally there are coarse particles formed by the aggregation of fine nanoparticles and weak linkages between the nanoparticles. However, the coarse particles were destroyed and the linkages were broken after mixing with a resin formulation, indicating the behavior of untangling the aggregation between nanoparticles.

키워드

과제정보

연구 과제 주관 기관 : 서울과학기술대학교

참고문헌

  1. V. Brusic, G. S. Frankel, J. Roldan and R. Saraf, "Corrosion and Protection of a Conductive Silver Paste", J. Electrochem. Soc., 142(8), 2591 (1995). https://doi.org/10.1149/1.2050058
  2. D.-H. Kim, S. Yoo, C.-W. Lee and T. Y. Lee, "Temperature Measurement and Contact Resistance of Au Stud Bump Bonding and Ag Paste Bonding with Thermal Heater Device", J. Microelectron. Packag. Soc., 17(2), 55 (2010).
  3. G. Kim, K.-M. Jung, J.-T. Moon and J.-H. Lee, "Electrical Resistivity and Thermal Conductivity of Paste Containing Ag-Coated Cu Flake Filler", J. Microelectron. Packag. Soc., 21(4), 51 (2014).
  4. H. J. Kang, T. Kim and M. Y. Jeong, "PLC Devices Fabricated on Flexible Plastic Substrate by Roll-to-Roll Imprint Lithography", J. Microelectron. Packag. Soc., 22(4), 25 (2015). https://doi.org/10.6117/KMEPS.2015.22.4.025
  5. S. H. Seo, J.-H. Lee, J.-Y. Song and W.-J. Lee, "Control of Position of Neutral Line in Flexible Microelectronic System Under Bending Stress", J. Microelectron. Packag. Soc., 23(2), 79 (2016). https://doi.org/10.6117/KMEPS.2016.23.2.079
  6. T.-I. Lee, C. Kim, M. S. Kim and T.-S. Kim, "Measurement of Flexural Modulus of Lamination Layers on Flexible Substrates", J. Microelectron. Packag. Soc., 23(3), 63 (2016). https://doi.org/10.6117/KMEPS.2016.23.3.063
  7. N. Cabrera and N. F. Mott, "Theory of the Oxidation of Metals", Rep. Prog. Phys., 12, 164 (1949).
  8. X. Xu, X. Luo, H. Zhuang, W. Li and B. Zhang, "Electroless Silver Coating on Fine Copper Powder and Its Effects on Oxidation Resistance", Mater. Lett., 57(24-25), 3987 (2003). https://doi.org/10.1016/S0167-577X(03)00252-0
  9. J. Zhao, D. M. Zhang and J. Zhao, "Fabrication of Cu-Ag Core-Shell Bimetallic Superfine Ppowders by Eco-friendly Reagents and Structures Characterization", J. Solid State Chem., 184(9), 2339 (2011). https://doi.org/10.1016/j.jssc.2011.06.032
  10. D. S. Jung, H. M. Lee, Y. C. Kang and S. B. Park, "Air-stable Silver-coated Copper Particles of Sub-micrometer Size", J. Colloid Interface Sci., 364(2), 574 (2011). https://doi.org/10.1016/j.jcis.2011.08.033
  11. H. T. Hai, J. G. Ahn, D. J. Kim, J. R. Lee, H. S. Chung and C. O. Kim, "Developing Process for Coating Copper Particles with Silver by Electroless Plating Method", Sur. Coat. Technol., 201, 3788 (2006). https://doi.org/10.1016/j.surfcoat.2006.03.025
  12. Y.-S. Lin and S.-S. Chiu, "Electrical Properties of Copperfilled Electrically Conductive Adhesives and Pressure-Dependent Conduction Behavior of Copper Particles", J. Adhes. Sci. Technol., 22, 1673 (2008). https://doi.org/10.1163/156856108X320537
  13. M. Tsuji, S. Hikino, Y. Sano and M. Horigome, "Preparation of Cu@Ag Core-Shell Nanoparticles Using a Two-Step Polyol Process under Bubbling of $N_2$ Gas", Chem. Lett., 38(6), 518 (2009). https://doi.org/10.1246/cl.2009.518
  14. R. Zhang, W. Lin, K. Lawrence and C. P. Wong, "Highly Reliable, Low Cost, Isotropically Conductive Adhesives Filled with Ag-Coated Cu Flakes for Electronic Packaging Applications", Int. J. Adhes. Adhes., 30, 403 (2010). https://doi.org/10.1016/j.ijadhadh.2010.01.004
  15. X. G. Cao and H. Y. Zhang, "Fabrication and Performance of Silver Coated Copper Powder", Electron. Matter. Lett., 8(4), 467 (2012). https://doi.org/10.1007/s13391-012-1110-6
  16. Y. Peng, C. Yang, K. Chen, S. R. Popuri, C.-H. Lee and B.-S. Tang, "Study on Synthesis of Ultrafine Cu-Ag Core-Shell Powders with High Electrical Conductivity", Appl. Sur. Sci., 263, 38 (2012). https://doi.org/10.1016/j.apsusc.2012.08.066
  17. A. Muzikansky, P. Nanikashvili, J. Grinblat and D. Zitoun, "Ag Dewetting in Cu@Ag Monodisperse Core-Shell Nanoparticles", J. Phys. Chem. C., 117, 3093 (2013).
  18. S.-S. Chee and J.-H. Lee, 'Preparation and Oxidation Behavior of Ag-Coated Cu Nanoparticles Less Than 20 nm in Size", J. Mater. Chem. C., 2, 5372 (2014). https://doi.org/10.1039/c4tc00509k
  19. E. B. Choi and J.-H. Lee, "Ethylene Glycol-Based Ag Plating for the Wet Chemical Fabrication of One Micrometer Cu/Ag Core/Shell Particles, J. Alloys Compd., 643, S231 (2015). https://doi.org/10.1016/j.jallcom.2014.11.111
  20. J. Ryu, H.-S. Kim and H. T. Hahn, "Reactive Sintering of Copper Nanoparticles Using Intense Pulsed Light for Printed Electronic", J. Elecron. Mater., 40(1), 42 (2010).
  21. S.-J. Joo, H.-J. Hwang and H.-S. Kim, "Highly Conductive Copper Nano/microparticles Ink via Flash Light Sintering for Printed Electronics", Nanotechnology, 25, 265601 (2014). https://doi.org/10.1088/0957-4484/25/26/265601
  22. Y. D. Mott, J. Galkowski, L. Wang, J. Luo and C.-J. Zhong, "Synthesis of Size-Controlled and Shaped Copper Nanoparticles", Langmuir, 23, 5740 (2007). https://doi.org/10.1021/la0635092
  23. Y. M. Shin, S.-S. Chee and J.-H. Lee, "Trends on Synthesis of Cu Nanoparticles by a Wet Reduction Method", J. Microelectron. Packag. Soc., 20(3), 11 (2013). https://doi.org/10.6117/KMEPS.2013.20.3.011
  24. Y. M. Shin and J.-H. Lee, "Effects of Process Parameters on Cu Powder Synthesis Yield and Particle Size in a Wet-chemical Process", Arch. Metall. Mater., 60 (2015).
  25. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, 2nd Ed., pp.185-197, Chapman & Hall, London (1992).