DOI QR코드

DOI QR Code

Correction of the hardness measurement for pile-up materials with a nano indentation machine

파일-업 재료에 대한 나노 압입 시험기의 경도 측정값 교정

  • Park, Moon Shik (Department of Mechanical Engineering, Hannam University)
  • 박문식 (한남대학교 기계공학과)
  • Received : 2016.08.16
  • Accepted : 2016.12.08
  • Published : 2016.12.31

Abstract

Measurements of the elastic modulus and hardness using a nano indentation machine rely on the equation for the fitted contact area, which is valid for only sink-in materials. For most soft engineering materials that involve pile-up behavior rather than sink-in, the contact area equation underestimates the contact area and thus overestimates the elastic modulus and hardness. This study proposes a correction method to amend erroneous hardness measurements in pile-up situations. The method is a supplemental derivation to the original hardness measurement with the known value of the elastic modulus. The method was examined for soft engineering metals, Al 6061 T6 and C 12200, via tensile tests, nano indentation tests, impression observations, and finite element analysis. The proposed technique shows reasonable agreement with the analytical results accounting for strain gradient plasticity from a previous study.

본 연구는 공업용 응용이 많은 알루미늄 또는 구리와 같은 재료를 나노 압입 시험기에 의하여 탄생계수 및 경도 값을 얻을 때 파일-업(pile-up) 현상이 생기는 경우 계측 값을 교정할 수 있는 방법에 대해 다룬다. 나노 압입 시험기에 의해 얻어지는 탄성계수와 경도의 측정치는 접촉면적의 피팅 (fitting) 식에 의존하게 되는데 이는 오로지 싱크-인(sink-in) 재료에만 유효하다. 그러므로 싱크-인이 아닌 파일-업인 많은 무른 공학재료들에 있어서는 그 접촉면적이 실제보다 적게 계산되고 따라서 탄성계수와 경도는 높게 계산된다. 본 연구에서는 이미 탄생계수를 알고 있는 파일-업 거동을 보이는 재료의 경우에 경도 값을 교정하는 방법을 제안한다. 이 방법을 경금속인 Al 6061 T6와 C 12200에 적용하기 위해 인장시험, 나노 압입시험, 압입자국 측정, 그리고 유한요소해석을 수행하였다. 압입 자국 측정과 유한요소해석을 흥하여 두 재료 모두 파일-업 거동이 발생하는 것을 알 수 있었다. 제안한 교정 방법은 싱크-인 접촉면적 값을 파일-업 접촉면적 값으로 늘려 주었고 경도 측정값을 낮추어 주었다. 교정된 경도 값은 별도의 연구에서 다룬 변형률 구배 소성을 고려한 유한요소해석 결과와 잘 일치하였다.

Keywords

References

  1. J. M. Lee, K. S. Lee, D. C. Ko and B. M. Kim, "Identification of the bulk behavior of coatings by nano indentation test and FE simulation and its application to forming analysis of the coated steel sheet," Transactions of the Korean Society of Mechanical Engineers A, 30(11), pp. 1425-1432, 2006. DOl: http://dx.doi.org/10.3795/KSME-A.2006.30.11.1425
  2. H. Lee and J. H. Lee, "Evaluation of material characteristics by micro/nano indentation tests," Transactions of the Korean Society of Mechanical Engineers A, 32(10), pp. 805-816, 2008. DOl: http://dx.doi.org/10.3795/KSME-A.2008.32.10.805
  3. C. H. Hong, M. Kim, J. H. Lee and H. Lee, "A conical indentation technique based on FEA solutions for property evaluation," Transactions of the Korean Society of Mechanical Engineers A, 33(9), pp. 859-869, 2009. DOl: http://dx.doi.org/10.3795/KSME-A.2009.33.9.859
  4. B. M. Kim, C. J. Lee and J. M. Lee, "Estimations of wok hardening exponents of engineering metals using residual indentation profiles of nano-indentation," Journal of Mechanical Science and Technology, 24, pp. 73-76, 2010. DOl: http://dx.doi.org/10.1007/s12206-009-1115-8
  5. Q. Ma and D. R. Clarke, "Size dependent hardness of silver single crystals." Journal of Materials Research, 10(4), pp. 853-863, 1995. DOl: http://dx.doi.org/10.1557/JMR.1995.0853
  6. W. J. Poole, M. F. Ashby and A. A. Fleck, Micro-hardness of annealed and work-hardened copper polycrystals, Scripta Materialia 34(4) (1996) 559-564. DOl: http://dx.doi.org/10.1016/1359-6462(95)00524-2
  7. K. W. MeElhaney, J. J. Vlassak and W. D. Nix, "Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments." Journal of Materials Research, 13 pp. 1300-1306, 1998. DOl: http://dx.doi.org/10.1557/JMR.1998.0185
  8. W. C. Olive and G. M. Pharr, "Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments," Journal of Materials Research, 7(6), pp. 1564-1580, 1992. DOl: http://dx.doi.org/10.1557/JMR.1992.1564
  9. W. C. Oliver and G. M. Pharr, "Measurement of hardness and elastic moduIus by instrumented indentation: Advances in understanding and refinements to methodology," Journal of Material Research, 19(1), pp. 3-20, 2004. DOl: http://dx.doi.org/10.1557/jmr.2004.19.1.3
  10. C. Moosbrugger, Atlas of stress-strain curves, ASM international, Materials Park, OH, USA, 2002.
  11. D. Joslin and W. Oliver, "A new method for analyzing data from continuous depth-sensing microindentation tests," Journal of Materials Research, 5(01), pp. 123-126, 1990. DOl: http://dx.doi.org/10.1557/JMR.1990.0123
  12. Y. Guo, Y. Huang, H. Gao, Z. ZhuMang and K. C. Hwang, "Taylor-based nonlocal theory of plasticity: Numerical studies of the micro-indentation experiments and crack tip fields." International Journal of Solids and Structures, 38(42-43), pp. 7447-7460, 2001. DOl: http://dx.doi.org/10.1016/S0020-7683(01)00047-6
  13. G. Z. Voyiadjis and R. Peters, "Size effects in nanoindentation: an experimental and analytical study," Acta Mechanica, 211, pp. 131-152, 2010. DOl: http://dx.doi.org/10.1007/s00707-009-0222-z
  14. Z. Shi, X. Feng, Y. Huang, J. Xiao and K. C. Hwang, "The equivalent axisymmetric model for Berkovich indenters in power-law hardening materials," International Journal of Plasticity, 26, pp. 141-148, 2010. DOl: http://dx.doi.org/10.1016/j.ijplas.2009.06.008
  15. M. S. Park and Y. S. Suh, "Hardness estimation for pile-up materials by strain gradient plasticity incorporating the gemetrically necessary dislocation density," Journal of Mechanical Science and Technology, 27(2), pp. 525-531, 2013. DOl: http://dx.doi.org/10.1007/s12206-012-1243-4