DOI QR코드

DOI QR Code

State of the Art on Prediction of Concrete Pumping

  • Kwon, Seung Hee (Department of Civil and Environmental Engineering, Myongji University) ;
  • Jang, Kyong Pil (Department of Civil and Environmental Engineering, Myongji University) ;
  • Kim, Jae Hong (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology) ;
  • Shah, Surendra P. (Department of Civil and Environmental Engineering, Northwestern University)
  • Received : 2016.03.22
  • Accepted : 2016.05.10
  • Published : 2016.09.30

Abstract

Large scale constructions needs to estimate a possibility for pumping concrete. In this paper, the state of the art on prediction of concrete pumping including analytical and experimental works is presented. The existing methods to measure the rheological properties of slip layer (or called lubricating layer) are first introduced. Second, based on the rheological properties of slip layer and parent concrete, models to predict concrete pumping (flow rate, pumping pressure, and pumpable distance) are explained. Third, influencing factors on concrete pumping are discussed with the test results of various concrete mixes. Finally, future need for research on concrete pumping is suggested.

Keywords

References

  1. Alekseev, S. N. (1952). On the calculation of resistance in pipe of concrete pumps. Mekhanizatia Storitel'stva, 9(1), 8-13.
  2. Brookfield Engineering Laboratories Inc. (2006). More solutions to sticky problems. Brookfield, MA.
  3. Browne, R. D., & Bamforth, P. B. (1977). Tests to establish concrete pumpability. ACI Journal Proceedings, 74(5), 193-203.
  4. Chalimo, T., Touloupov, N., & Markovskiy, M. (1989). Peculiarities of concrete pumping. Minsk: Stroikniga. (in Russian).
  5. Chapdelaine, F. (2007). Etude fondamentale et partique sur le pompage du beton. Ph. D. Thesis, Faculty of the Higher Studies of Laval University, Canada.
  6. Choi, M. S. (2013). Prediction of concrete pumping performance base on the evaluation of lubrication layer properties. Ph. D. Thesis, Korea Advanced Institute of Science and Technology, Korea.
  7. Choi, M. S., Kim, Y. J., Jang, K. P., & Kwon, S. H. (2014). Effect of the coarse aggregate size on pipe flow of pumped concrete. Construction and Building Materials, 66, 723-730. https://doi.org/10.1016/j.conbuildmat.2014.06.027
  8. Choi, M. S., Kim, Y. J., & Kwon, S. H. (2013a). Numerical prediction on pipe flow of pumped concrete based on shearinduced particle migration. Cement and Concrete Research, 52, 216-224. https://doi.org/10.1016/j.cemconres.2013.07.004
  9. Choi, M. S., Roussel, N., Kim, Y. J., & Kim, J. K. (2013b). Lubrication layer properties during concrete pumping. Cement and Concrete Research, 45(3), 69-78. https://doi.org/10.1016/j.cemconres.2012.11.001
  10. De Larrard, F., Hu, C., Sedran, T., Szitkar, J. C., Joly, M., Claux, F., & Derkx, F. (1997). A new rheometer for soft-to-fluid fresh concrete. ACI Materials Journal, 94(3), 234-243.
  11. Ede, A. N. (1957). The resistance of concrete pumped through pipelines. Magazine of Concrete Research, 9(27), 129-140. https://doi.org/10.1680/macr.1957.9.27.129
  12. Feys, D., Khayat, K. H., & Khatib, R. (2016). How do concrete rheology, tribology, flow rate and pipe radius influence pumping pressure? Cement and Concrete Research, 66, 38-46. https://doi.org/10.1016/j.cemconcomp.2015.11.002
  13. Feys, D., Khayat, K. H., Perez-Schell, A., & Khatib, R. (2014). Development of a tribometer to characterize lubrication layer properties of self-consolidating concrete. Cement and Concrete Research, 54, 40-52. https://doi.org/10.1016/j.cemconcomp.2014.05.008
  14. Feys, D., Khayat, K. H., Perez-Schell, A., & Khatib, R. (2015). Prediction of pumping pressure by means of new tribometer for highly-workable concrete. Cement and Concrete Research, 57, 102-115. https://doi.org/10.1016/j.cemconcomp.2014.12.007
  15. Jacobsen, S., Haugan, L., Hammer, T. A., & Kalogiannidis, E. (2009). Flow conditions of fresh cortar and concrete in different pipes. Cement and Concrete Research, 39(11), 997-1006. https://doi.org/10.1016/j.cemconres.2009.07.005
  16. Jacobsen, S., Mork J. H., Lee, S. F., & Haugan, L. (2008). Pumping of concrete and mortar-state of the Art. COIN Project Report, 5, 1-44.
  17. Jeong, J. H., Jang, K. P., Park, C. K., Lee, S. H., & Kwon, S. H. (2016). Effect of admixtures on pumpability for high-strength concrete. ACI Materials Journal, 113(3), 323-333.
  18. Jo, S. D., Park, C. K., Jeong, J. H., Lee, S. H., & Kwon, S. H. (2012). A computational approach to estimating a lubricating layer in concrete pumping. Computers Materials and Continua, 27(3), 189-210.
  19. Kaplan, D., Larrard, F. D., & Sedran, T. (2005a). Design of concrete pumping circuit. ACI Materials Journal, 102(2), 110-117.
  20. Kaplan, D., Larrard, F. D., & Sedran, T. (2005b). Avoidance of blockages in concrete pumping process. ACI Materials Journal, 102(3), 183-191.
  21. Kim, H. R., Cho, H. K., Kim, J. C., & Lee, K. C. (2014). Prediction of pumping friction resistance coefficient in pipe influenced by concrete rheology properties. Journal of the Korea Institute of Building Construction, 14(2), 18-126.
  22. Koehler, E. P., Fowler, D. W., Ferraris, C. F., & Amziane, S. (2006). A new portable rheometer for fresh self-consolidating concrete. In C. Shi & K. H. Khayat (Eds.), Workability of SCC: Roles of its constituents and measurement techniques, SP-233 (pp. 97-116). Farmington Hills, MI: American Concrete Institute.
  23. Kwon, S. H., Jo, S. D., Park, C. K., Jeong, J. H., & Lee, S. H. (2013a). Prediction of concrete pumping: Part I—development of new tribometer for analysis of lubricating layer. ACI Materials Journal, 110(6), 647-656.
  24. Kwon, S. H., Jo, S. D., Park, C. K., Jeong, J. H., & Lee, S. H. (2013b). Prediction of concrete pumping: Part II—analytical prediction and experimental verification. ACI Materials Journal, 110(6), 657-668.
  25. Lipovetski, M. (1963). Concrete pumps and their use in dam construction (pp. 15-85). Moscow, Russia: Moskva-Leningrade. (in Russian).
  26. Mechtcherine, V., Nerella, V. N., & Kasten, K. (2014). Testing pumpability of concrete using sliding pipe rheometer. Construction and Building Materials, 53, 312-323. https://doi.org/10.1016/j.conbuildmat.2013.11.037
  27. Met-flow, S. A. (2002). Model UVP-duo with software version 3 user's guide. Switzerland: Met-flow Co.
  28. Morinaga, S. (1973). Pumpability of concrete and pumping pressure in pipelines. Proceedings of a RILEM Seminar, Leeds, 3, 1-39.
  29. Ngo, T. T., Kadri, E. H., Bennacer, R., & Cussigh, F. (2010). Use of tribometer to estimate interface friction and concrete boundary layer composition during the fluid concrete pumping. Construction and Building Materials, 23(7), 1253-1261.
  30. Phillips, R. J., Armstrong, R. C., & Brown, R. A. (1992). A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Physics of Fluids A, 4(1), 30-40. https://doi.org/10.1063/1.858498
  31. Rio, O., Rodriguez, A., Nabulsi, S., & Alvarez, M. (2005). Pumping quality control method based on online concrete pumping assessment. ACI Materials Journal, 102(2), 110-117.
  32. Sakuta, M., Kasanu, I., Yamane, S., & Sakamoto, A. (1989). Pumpability of fresh concrete (pp. 125-133). Tokyo, Japan: Takenaka Technical Research Laboratory
  33. Tanigawa, Y., Mori, H., & Noda, Y. (1991). Theoretical study on pumping of fresh concrete, Concrete Institute of Japan, Vol. 13.
  34. Tattersall, G. H., & Banfill, P. F. (1983). The rheology of fresh concrete (p. 356). London, UK: Pitman Advanced Publishing Program.
  35. Wallevik, J. E. (2008). Minimizing end-effects in the coaxial cylinders viscometer: Viscoplastic flow inside the ConTec BML Viscometer 3. Journal of Non-Newtonian Fluid Mechanics, 155(3), 116-123. https://doi.org/10.1016/j.jnnfm.2008.05.006
  36. Weber, R. (1968). The transport of concrete by pipeline. London, UK: Cement and Concrete Association.

Cited by

  1. 시멘트계 재료의 펌프압송성능 향상을 위한 윤활층 활성화제 주입 방법 제안 및 소규모 실험검증 vol.5, pp.4, 2016, https://doi.org/10.14190/jrcr.2017.5.4.442
  2. Visualization of Concrete Slump Flow Using the Kinect Sensor vol.18, pp.3, 2018, https://doi.org/10.3390/s18030771
  3. Experimental Observation on Variation of Rheological Properties during Concrete Pumping vol.12, pp.1, 2016, https://doi.org/10.1186/s40069-018-0310-3
  4. Process for Integrating Constructability into the Design Phase in High-Rise Concrete Buildings: Focused on Temporary Work vol.12, pp.1, 2016, https://doi.org/10.1186/s40069-018-0317-9
  5. Numerical Study on Concrete Pumping Behavior via Local Flow Simulation with Discrete Element Method vol.12, pp.9, 2016, https://doi.org/10.3390/ma12091415
  6. A study of the effect of rheological properties of fresh concrete on shotcrete-rebound based on different additive components vol.224, pp.None, 2019, https://doi.org/10.1016/j.conbuildmat.2019.07.060
  7. Investigations on the Influence of Binders toward Rheological Behavior of Cementitious Pastes vol.32, pp.3, 2020, https://doi.org/10.1061/(asce)mt.1943-5533.0003038
  8. Effects of Ultrafine Powders on the Properties of the Lubrication Layer and Highly Flowable Concrete vol.32, pp.5, 2016, https://doi.org/10.1061/(asce)mt.1943-5533.0003193
  9. 총설: 콘크리트 및 모르타르를 위한 석탄 바텀애시의 활용 vol.8, pp.3, 2016, https://doi.org/10.14190/jrcr.2020.8.3.333
  10. Specification of the Properties and Effects of Additives and Admixtures on a Mixture Suitable for 3D Printing of Buildings vol.28, pp.4, 2016, https://doi.org/10.2478/sjce-2020-0029
  11. 펌핑 조건에 따른 콘크리트 작업성 변화 실내 평가 방법 제안 vol.8, pp.4, 2016, https://doi.org/10.14190/jrcr.2020.8.4.413
  12. Computational Investigation of Concrete Pipe Flow: Critical Review vol.118, pp.6, 2021, https://doi.org/10.14359/51733124
  13. Effects of Aggregate Content on Rheological Properties of Lubrication Layer and Pumping Concrete vol.118, pp.6, 2016, https://doi.org/10.14359/51734147
  14. Simulation of Motion Behavior of Concrete in Pump Pipe by DEM vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/3750589
  15. A Rheological Model for Evaluating the Behavior of Shear Thickening of Highly Flowable Mortar vol.26, pp.4, 2021, https://doi.org/10.3390/molecules26041011
  16. Interlaboratory Comparative Tests in Ready-Mixed Concrete Quality Assessment vol.14, pp.13, 2016, https://doi.org/10.3390/ma14133475
  17. Comparative Study of Different Measurement Methods for Characterizing Rheological Properties of Lubrication Layer vol.26, pp.13, 2016, https://doi.org/10.3390/molecules26133889
  18. Numerical Reliability Study Based on Rheological Input for Bingham Paste Pumping Using a Finite Volume Approach in OpenFOAM vol.14, pp.17, 2016, https://doi.org/10.3390/ma14175011
  19. External Injection Method for Improvement of Concrete Pumpability vol.118, pp.5, 2021, https://doi.org/10.14359/51732977
  20. A wall slip pressure gradient model of unclassified tailings paste in pipe flow: Theoretical and loop test study vol.298, pp.None, 2016, https://doi.org/10.1016/j.jnnfm.2021.104691
  21. Novel tri-viscous model to simulate pumping of flowable concrete through characterization of lubrication layer and plug zones vol.126, pp.None, 2022, https://doi.org/10.1016/j.cemconcomp.2021.104370