References
- Alekseev, S. N. (1952). On the calculation of resistance in pipe of concrete pumps. Mekhanizatia Storitel'stva, 9(1), 8-13.
- Brookfield Engineering Laboratories Inc. (2006). More solutions to sticky problems. Brookfield, MA.
- Browne, R. D., & Bamforth, P. B. (1977). Tests to establish concrete pumpability. ACI Journal Proceedings, 74(5), 193-203.
- Chalimo, T., Touloupov, N., & Markovskiy, M. (1989). Peculiarities of concrete pumping. Minsk: Stroikniga. (in Russian).
- Chapdelaine, F. (2007). Etude fondamentale et partique sur le pompage du beton. Ph. D. Thesis, Faculty of the Higher Studies of Laval University, Canada.
- Choi, M. S. (2013). Prediction of concrete pumping performance base on the evaluation of lubrication layer properties. Ph. D. Thesis, Korea Advanced Institute of Science and Technology, Korea.
- Choi, M. S., Kim, Y. J., Jang, K. P., & Kwon, S. H. (2014). Effect of the coarse aggregate size on pipe flow of pumped concrete. Construction and Building Materials, 66, 723-730. https://doi.org/10.1016/j.conbuildmat.2014.06.027
- Choi, M. S., Kim, Y. J., & Kwon, S. H. (2013a). Numerical prediction on pipe flow of pumped concrete based on shearinduced particle migration. Cement and Concrete Research, 52, 216-224. https://doi.org/10.1016/j.cemconres.2013.07.004
- Choi, M. S., Roussel, N., Kim, Y. J., & Kim, J. K. (2013b). Lubrication layer properties during concrete pumping. Cement and Concrete Research, 45(3), 69-78. https://doi.org/10.1016/j.cemconres.2012.11.001
- De Larrard, F., Hu, C., Sedran, T., Szitkar, J. C., Joly, M., Claux, F., & Derkx, F. (1997). A new rheometer for soft-to-fluid fresh concrete. ACI Materials Journal, 94(3), 234-243.
- Ede, A. N. (1957). The resistance of concrete pumped through pipelines. Magazine of Concrete Research, 9(27), 129-140. https://doi.org/10.1680/macr.1957.9.27.129
- Feys, D., Khayat, K. H., & Khatib, R. (2016). How do concrete rheology, tribology, flow rate and pipe radius influence pumping pressure? Cement and Concrete Research, 66, 38-46. https://doi.org/10.1016/j.cemconcomp.2015.11.002
- Feys, D., Khayat, K. H., Perez-Schell, A., & Khatib, R. (2014). Development of a tribometer to characterize lubrication layer properties of self-consolidating concrete. Cement and Concrete Research, 54, 40-52. https://doi.org/10.1016/j.cemconcomp.2014.05.008
- Feys, D., Khayat, K. H., Perez-Schell, A., & Khatib, R. (2015). Prediction of pumping pressure by means of new tribometer for highly-workable concrete. Cement and Concrete Research, 57, 102-115. https://doi.org/10.1016/j.cemconcomp.2014.12.007
- Jacobsen, S., Haugan, L., Hammer, T. A., & Kalogiannidis, E. (2009). Flow conditions of fresh cortar and concrete in different pipes. Cement and Concrete Research, 39(11), 997-1006. https://doi.org/10.1016/j.cemconres.2009.07.005
- Jacobsen, S., Mork J. H., Lee, S. F., & Haugan, L. (2008). Pumping of concrete and mortar-state of the Art. COIN Project Report, 5, 1-44.
- Jeong, J. H., Jang, K. P., Park, C. K., Lee, S. H., & Kwon, S. H. (2016). Effect of admixtures on pumpability for high-strength concrete. ACI Materials Journal, 113(3), 323-333.
- Jo, S. D., Park, C. K., Jeong, J. H., Lee, S. H., & Kwon, S. H. (2012). A computational approach to estimating a lubricating layer in concrete pumping. Computers Materials and Continua, 27(3), 189-210.
- Kaplan, D., Larrard, F. D., & Sedran, T. (2005a). Design of concrete pumping circuit. ACI Materials Journal, 102(2), 110-117.
- Kaplan, D., Larrard, F. D., & Sedran, T. (2005b). Avoidance of blockages in concrete pumping process. ACI Materials Journal, 102(3), 183-191.
- Kim, H. R., Cho, H. K., Kim, J. C., & Lee, K. C. (2014). Prediction of pumping friction resistance coefficient in pipe influenced by concrete rheology properties. Journal of the Korea Institute of Building Construction, 14(2), 18-126.
- Koehler, E. P., Fowler, D. W., Ferraris, C. F., & Amziane, S. (2006). A new portable rheometer for fresh self-consolidating concrete. In C. Shi & K. H. Khayat (Eds.), Workability of SCC: Roles of its constituents and measurement techniques, SP-233 (pp. 97-116). Farmington Hills, MI: American Concrete Institute.
- Kwon, S. H., Jo, S. D., Park, C. K., Jeong, J. H., & Lee, S. H. (2013a). Prediction of concrete pumping: Part I—development of new tribometer for analysis of lubricating layer. ACI Materials Journal, 110(6), 647-656.
- Kwon, S. H., Jo, S. D., Park, C. K., Jeong, J. H., & Lee, S. H. (2013b). Prediction of concrete pumping: Part II—analytical prediction and experimental verification. ACI Materials Journal, 110(6), 657-668.
- Lipovetski, M. (1963). Concrete pumps and their use in dam construction (pp. 15-85). Moscow, Russia: Moskva-Leningrade. (in Russian).
- Mechtcherine, V., Nerella, V. N., & Kasten, K. (2014). Testing pumpability of concrete using sliding pipe rheometer. Construction and Building Materials, 53, 312-323. https://doi.org/10.1016/j.conbuildmat.2013.11.037
- Met-flow, S. A. (2002). Model UVP-duo with software version 3 user's guide. Switzerland: Met-flow Co.
- Morinaga, S. (1973). Pumpability of concrete and pumping pressure in pipelines. Proceedings of a RILEM Seminar, Leeds, 3, 1-39.
- Ngo, T. T., Kadri, E. H., Bennacer, R., & Cussigh, F. (2010). Use of tribometer to estimate interface friction and concrete boundary layer composition during the fluid concrete pumping. Construction and Building Materials, 23(7), 1253-1261.
- Phillips, R. J., Armstrong, R. C., & Brown, R. A. (1992). A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Physics of Fluids A, 4(1), 30-40. https://doi.org/10.1063/1.858498
- Rio, O., Rodriguez, A., Nabulsi, S., & Alvarez, M. (2005). Pumping quality control method based on online concrete pumping assessment. ACI Materials Journal, 102(2), 110-117.
- Sakuta, M., Kasanu, I., Yamane, S., & Sakamoto, A. (1989). Pumpability of fresh concrete (pp. 125-133). Tokyo, Japan: Takenaka Technical Research Laboratory
- Tanigawa, Y., Mori, H., & Noda, Y. (1991). Theoretical study on pumping of fresh concrete, Concrete Institute of Japan, Vol. 13.
- Tattersall, G. H., & Banfill, P. F. (1983). The rheology of fresh concrete (p. 356). London, UK: Pitman Advanced Publishing Program.
- Wallevik, J. E. (2008). Minimizing end-effects in the coaxial cylinders viscometer: Viscoplastic flow inside the ConTec BML Viscometer 3. Journal of Non-Newtonian Fluid Mechanics, 155(3), 116-123. https://doi.org/10.1016/j.jnnfm.2008.05.006
- Weber, R. (1968). The transport of concrete by pipeline. London, UK: Cement and Concrete Association.
Cited by
- 시멘트계 재료의 펌프압송성능 향상을 위한 윤활층 활성화제 주입 방법 제안 및 소규모 실험검증 vol.5, pp.4, 2016, https://doi.org/10.14190/jrcr.2017.5.4.442
- Visualization of Concrete Slump Flow Using the Kinect Sensor vol.18, pp.3, 2018, https://doi.org/10.3390/s18030771
- Experimental Observation on Variation of Rheological Properties during Concrete Pumping vol.12, pp.1, 2016, https://doi.org/10.1186/s40069-018-0310-3
- Process for Integrating Constructability into the Design Phase in High-Rise Concrete Buildings: Focused on Temporary Work vol.12, pp.1, 2016, https://doi.org/10.1186/s40069-018-0317-9
- Numerical Study on Concrete Pumping Behavior via Local Flow Simulation with Discrete Element Method vol.12, pp.9, 2016, https://doi.org/10.3390/ma12091415
- A study of the effect of rheological properties of fresh concrete on shotcrete-rebound based on different additive components vol.224, pp.None, 2019, https://doi.org/10.1016/j.conbuildmat.2019.07.060
- Investigations on the Influence of Binders toward Rheological Behavior of Cementitious Pastes vol.32, pp.3, 2020, https://doi.org/10.1061/(asce)mt.1943-5533.0003038
- Effects of Ultrafine Powders on the Properties of the Lubrication Layer and Highly Flowable Concrete vol.32, pp.5, 2016, https://doi.org/10.1061/(asce)mt.1943-5533.0003193
- 총설: 콘크리트 및 모르타르를 위한 석탄 바텀애시의 활용 vol.8, pp.3, 2016, https://doi.org/10.14190/jrcr.2020.8.3.333
- Specification of the Properties and Effects of Additives and Admixtures on a Mixture Suitable for 3D Printing of Buildings vol.28, pp.4, 2016, https://doi.org/10.2478/sjce-2020-0029
- 펌핑 조건에 따른 콘크리트 작업성 변화 실내 평가 방법 제안 vol.8, pp.4, 2016, https://doi.org/10.14190/jrcr.2020.8.4.413
- Computational Investigation of Concrete Pipe Flow: Critical Review vol.118, pp.6, 2021, https://doi.org/10.14359/51733124
- Effects of Aggregate Content on Rheological Properties of Lubrication Layer and Pumping Concrete vol.118, pp.6, 2016, https://doi.org/10.14359/51734147
- Simulation of Motion Behavior of Concrete in Pump Pipe by DEM vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/3750589
- A Rheological Model for Evaluating the Behavior of Shear Thickening of Highly Flowable Mortar vol.26, pp.4, 2021, https://doi.org/10.3390/molecules26041011
- Interlaboratory Comparative Tests in Ready-Mixed Concrete Quality Assessment vol.14, pp.13, 2016, https://doi.org/10.3390/ma14133475
- Comparative Study of Different Measurement Methods for Characterizing Rheological Properties of Lubrication Layer vol.26, pp.13, 2016, https://doi.org/10.3390/molecules26133889
- Numerical Reliability Study Based on Rheological Input for Bingham Paste Pumping Using a Finite Volume Approach in OpenFOAM vol.14, pp.17, 2016, https://doi.org/10.3390/ma14175011
- External Injection Method for Improvement of Concrete Pumpability vol.118, pp.5, 2021, https://doi.org/10.14359/51732977
- A wall slip pressure gradient model of unclassified tailings paste in pipe flow: Theoretical and loop test study vol.298, pp.None, 2016, https://doi.org/10.1016/j.jnnfm.2021.104691
- Novel tri-viscous model to simulate pumping of flowable concrete through characterization of lubrication layer and plug zones vol.126, pp.None, 2022, https://doi.org/10.1016/j.cemconcomp.2021.104370