References
- American Concrete Institute-American Society of Civil Engineers (ACI-ASCE) Committee 352, ACI 352R-02 Reapproved. (2010). Recommendations for design of beam-column connections in monolithic reinforced concrete structures. Farmington Hills, MI: ACI.
- American Concrete Institute (ACI) Committee 318, ACI 318-11. (2011). Building code requirements for structural concrete & commentary. Farmington Hills, MI: ACI.
- American Society of Civil Engineers-Structural Engineering Institute (ASCE/SEI). (2011). ASCE/SEI 59-11: blast protection of building. Reston, VA: ASCE.
- Birkimer, D. L., & Lindemann, R. (1971). Dynamic tensile strength of concrete materials. ACI Journal Proceedings, 68(1), 47-49.
- Bischoff, P. H., & Perry, S. H. (1991). Compressive behavior of concrete at high strain rates. Materials and Structures, 24, 425-450. https://doi.org/10.1007/BF02472016
- Bounds, W. L. (2010). Design of blast-resistant building in petrochemical facilities. Reston, VA: ASCE.
- Cormie, D., Mays, G., & Smith, P. (2009). Blast effects on buildings. London, UK: Thomas Telford.
- Crawford, J. E., Wu, Y., Choi, H. J., Magallanes, J. M. and Lan, S. (2012). Use and validation of the release III K&C concrete material model in LS-DYNA. Karagozian & Case Technical Report TR-11-36.5, Livermore, CA.
- Department of Defense (DoD). (2008). UFC 3-340-02: structures to resist the effects of accidental explosions. Sacramento, CA: Department of Defense.
- Dusenberry, D. O. (2010). Handbook for blast resistant design of buildings. Hoboken, NJ: Wiley.
- Foglar, M., & Kovar, M. (2013). Conclusions for experimental testing of blast resistance of FRC and RC bridge decks. International Journal of Impact Engineering, 59, 18-28. https://doi.org/10.1016/j.ijimpeng.2013.03.008
- Glenn, R. P., & Bannister, K. A. (1997). Airblast loading model for DYNA2D and DYNA3D. Washington, DC: Army Research Laboratory ARL-TR-1310.
- Krauthammer, T. (1996). A hybrid computational approach for the analysis of blast resistant connections. Computers & Structures, 61(5), 831-843. https://doi.org/10.1016/0045-7949(96)00097-1
- Krauthammer, T. (1997). Mesh, gravity and load effects on finite element simulations of blast loaded reinforced concrete structures. Computers & Structures, 63(6), 1113-1120. https://doi.org/10.1016/S0045-7949(96)00406-3
- Krauthammer, T. (1999). Blast-resistant structural concrete and steel connections. International Journal of Impact Engineering, 22(9-10), 887-910. https://doi.org/10.1016/S0734-743X(99)00009-3
- Lee, S. S., & Lee, J. W. (2001). Building design for blast resistance. Journal of the Architectural Institute, 45(10), 58-62.
- Ling, L. (2013) Load damages and blast resistance of RC slabs subjected to contact detonation. Master's Dissertation, Korea University.
- Livermore Software Technology Corporation (LSTC). (2013a). LS-DYNA keyword user's manual volume I. Livermore, CA: Livermore Software Technology Corporation.
- Livermore Software Technology Corporation (LSTC). (2013b). LS-DYNA keyword user's manual volume II material models. Livermore, CA: Livermore Software Technology Corporation.
- Malvar, L. J., & Ross, C. A. (1998). Review of strain rate effects for concrete in tension. ACI Materials Journal, 95(6), 735-739.
- Park, J. Y. (2011). Modern protective structures, CIR
- Roh, J. E. (2011). Analytical evaluation of blast resistance capacity of H-shaped columns in steel frame structures. Master's Dissertation, Dankook University.
- Yandzio, E., & Gough, M. (1999). Protection of buildings against explosions. England: Steel Construction Institute, London, UK.
- Yim, H. C., & Krauthammer, T. (2009). Load-impulse characterization for steel connections in monolithic reinforced concrete structures. International Journal of Impact Engineering, 36(5), 737-745. https://doi.org/10.1016/j.ijimpeng.2008.09.005
- Yoon, Y. S. (2013) Mechanics & design of reinforced concrete. CIR.
Cited by
- Experimental Cyclic Behavior of Precast Hybrid Beam-Column Connections with Welded Components vol.11, pp.2, 2016, https://doi.org/10.1007/s40069-017-0190-y
- Nonlocal Formulation for Numerical Analysis of Post-Blast Behavior of RC Columns vol.11, pp.2, 2016, https://doi.org/10.1007/s40069-017-0201-z
- Use of inclined studs in steel-plate-concrete composite walls with shear and axial loading vol.170, pp.7, 2016, https://doi.org/10.1680/jstbu.15.00107
- Natural frequency and damping ratio of steel plate-concrete walls with inclined studs under forced oscillation vol.70, pp.14, 2016, https://doi.org/10.1680/jmacr.17.00207
- Research on steel-plate-concrete walls with inclined studs under combined loads vol.171, pp.1, 2016, https://doi.org/10.1680/jstbu.16.00137
- Sustainable RC Beam-Column Connections with Headed Bars: A Formula for Shear Strength Evaluation vol.10, pp.2, 2016, https://doi.org/10.3390/su10020401
- Shear strength of joints between reinforced concrete slabs and steel-plate-concrete walls vol.171, pp.10, 2016, https://doi.org/10.1680/jstbu.16.00138
- Modelling of Stirrup Confinement Effects in RC Layered Beam Finite Elements Using a 3D Yield Criterion and Transversal Equilibrium Constraints vol.12, pp.1, 2018, https://doi.org/10.1186/s40069-018-0278-z
- Experimental and Numerical Assessment of Reinforced Concrete Beams with Disturbed Depth vol.13, pp.1, 2019, https://doi.org/10.1186/s40069-019-0369-5
- Research on Damage Assessment of Concrete-Filled Steel Tubular Column Subjected to Near-Field Blast Loading vol.2020, pp.None, 2016, https://doi.org/10.1155/2020/8883711
- Prediction of Damage Level of Slab-Column Joints under Blast Load vol.10, pp.17, 2016, https://doi.org/10.3390/app10175837
- Numerical Simulation on Dynamic Behavior of Slab-Column Connections Subjected to Blast Loads vol.11, pp.16, 2021, https://doi.org/10.3390/app11167573