Browse > Article
http://dx.doi.org/10.1007/s40069-016-0150-y

State of the Art on Prediction of Concrete Pumping  

Kwon, Seung Hee (Department of Civil and Environmental Engineering, Myongji University)
Jang, Kyong Pil (Department of Civil and Environmental Engineering, Myongji University)
Kim, Jae Hong (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
Shah, Surendra P. (Department of Civil and Environmental Engineering, Northwestern University)
Publication Information
International Journal of Concrete Structures and Materials / v.10, no.sup3, 2016 , pp. 75-85 More about this Journal
Abstract
Large scale constructions needs to estimate a possibility for pumping concrete. In this paper, the state of the art on prediction of concrete pumping including analytical and experimental works is presented. The existing methods to measure the rheological properties of slip layer (or called lubricating layer) are first introduced. Second, based on the rheological properties of slip layer and parent concrete, models to predict concrete pumping (flow rate, pumping pressure, and pumpable distance) are explained. Third, influencing factors on concrete pumping are discussed with the test results of various concrete mixes. Finally, future need for research on concrete pumping is suggested.
Keywords
pumping; slip layer; prediction; rheology; tribometer;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Chapdelaine, F. (2007). Etude fondamentale et partique sur le pompage du beton. Ph. D. Thesis, Faculty of the Higher Studies of Laval University, Canada.
2 Choi, M. S. (2013). Prediction of concrete pumping performance base on the evaluation of lubrication layer properties. Ph. D. Thesis, Korea Advanced Institute of Science and Technology, Korea.
3 Choi, M. S., Kim, Y. J., Jang, K. P., & Kwon, S. H. (2014). Effect of the coarse aggregate size on pipe flow of pumped concrete. Construction and Building Materials, 66, 723-730.   DOI
4 Choi, M. S., Kim, Y. J., & Kwon, S. H. (2013a). Numerical prediction on pipe flow of pumped concrete based on shearinduced particle migration. Cement and Concrete Research, 52, 216-224.   DOI
5 Choi, M. S., Roussel, N., Kim, Y. J., & Kim, J. K. (2013b). Lubrication layer properties during concrete pumping. Cement and Concrete Research, 45(3), 69-78.   DOI
6 De Larrard, F., Hu, C., Sedran, T., Szitkar, J. C., Joly, M., Claux, F., & Derkx, F. (1997). A new rheometer for soft-to-fluid fresh concrete. ACI Materials Journal, 94(3), 234-243.
7 Ede, A. N. (1957). The resistance of concrete pumped through pipelines. Magazine of Concrete Research, 9(27), 129-140.   DOI
8 Feys, D., Khayat, K. H., & Khatib, R. (2016). How do concrete rheology, tribology, flow rate and pipe radius influence pumping pressure? Cement and Concrete Research, 66, 38-46.   DOI
9 Feys, D., Khayat, K. H., Perez-Schell, A., & Khatib, R. (2014). Development of a tribometer to characterize lubrication layer properties of self-consolidating concrete. Cement and Concrete Research, 54, 40-52.   DOI
10 Feys, D., Khayat, K. H., Perez-Schell, A., & Khatib, R. (2015). Prediction of pumping pressure by means of new tribometer for highly-workable concrete. Cement and Concrete Research, 57, 102-115.   DOI
11 Jacobsen, S., Haugan, L., Hammer, T. A., & Kalogiannidis, E. (2009). Flow conditions of fresh cortar and concrete in different pipes. Cement and Concrete Research, 39(11), 997-1006.   DOI
12 Jacobsen, S., Mork J. H., Lee, S. F., & Haugan, L. (2008). Pumping of concrete and mortar-state of the Art. COIN Project Report, 5, 1-44.
13 Jeong, J. H., Jang, K. P., Park, C. K., Lee, S. H., & Kwon, S. H. (2016). Effect of admixtures on pumpability for high-strength concrete. ACI Materials Journal, 113(3), 323-333.
14 Jo, S. D., Park, C. K., Jeong, J. H., Lee, S. H., & Kwon, S. H. (2012). A computational approach to estimating a lubricating layer in concrete pumping. Computers Materials and Continua, 27(3), 189-210.
15 Kaplan, D., Larrard, F. D., & Sedran, T. (2005a). Design of concrete pumping circuit. ACI Materials Journal, 102(2), 110-117.
16 Kaplan, D., Larrard, F. D., & Sedran, T. (2005b). Avoidance of blockages in concrete pumping process. ACI Materials Journal, 102(3), 183-191.
17 Kim, H. R., Cho, H. K., Kim, J. C., & Lee, K. C. (2014). Prediction of pumping friction resistance coefficient in pipe influenced by concrete rheology properties. Journal of the Korea Institute of Building Construction, 14(2), 18-126.
18 Koehler, E. P., Fowler, D. W., Ferraris, C. F., & Amziane, S. (2006). A new portable rheometer for fresh self-consolidating concrete. In C. Shi & K. H. Khayat (Eds.), Workability of SCC: Roles of its constituents and measurement techniques, SP-233 (pp. 97-116). Farmington Hills, MI: American Concrete Institute.
19 Brookfield Engineering Laboratories Inc. (2006). More solutions to sticky problems. Brookfield, MA.
20 Alekseev, S. N. (1952). On the calculation of resistance in pipe of concrete pumps. Mekhanizatia Storitel'stva, 9(1), 8-13.
21 Mechtcherine, V., Nerella, V. N., & Kasten, K. (2014). Testing pumpability of concrete using sliding pipe rheometer. Construction and Building Materials, 53, 312-323.   DOI
22 Kwon, S. H., Jo, S. D., Park, C. K., Jeong, J. H., & Lee, S. H. (2013a). Prediction of concrete pumping: Part I—development of new tribometer for analysis of lubricating layer. ACI Materials Journal, 110(6), 647-656.
23 Kwon, S. H., Jo, S. D., Park, C. K., Jeong, J. H., & Lee, S. H. (2013b). Prediction of concrete pumping: Part II—analytical prediction and experimental verification. ACI Materials Journal, 110(6), 657-668.
24 Lipovetski, M. (1963). Concrete pumps and their use in dam construction (pp. 15-85). Moscow, Russia: Moskva-Leningrade. (in Russian).
25 Met-flow, S. A. (2002). Model UVP-duo with software version 3 user's guide. Switzerland: Met-flow Co.
26 Morinaga, S. (1973). Pumpability of concrete and pumping pressure in pipelines. Proceedings of a RILEM Seminar, Leeds, 3, 1-39.
27 Ngo, T. T., Kadri, E. H., Bennacer, R., & Cussigh, F. (2010). Use of tribometer to estimate interface friction and concrete boundary layer composition during the fluid concrete pumping. Construction and Building Materials, 23(7), 1253-1261.
28 Phillips, R. J., Armstrong, R. C., & Brown, R. A. (1992). A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Physics of Fluids A, 4(1), 30-40.   DOI
29 Rio, O., Rodriguez, A., Nabulsi, S., & Alvarez, M. (2005). Pumping quality control method based on online concrete pumping assessment. ACI Materials Journal, 102(2), 110-117.
30 Browne, R. D., & Bamforth, P. B. (1977). Tests to establish concrete pumpability. ACI Journal Proceedings, 74(5), 193-203.
31 Chalimo, T., Touloupov, N., & Markovskiy, M. (1989). Peculiarities of concrete pumping. Minsk: Stroikniga. (in Russian).
32 Wallevik, J. E. (2008). Minimizing end-effects in the coaxial cylinders viscometer: Viscoplastic flow inside the ConTec BML Viscometer 3. Journal of Non-Newtonian Fluid Mechanics, 155(3), 116-123.   DOI
33 Sakuta, M., Kasanu, I., Yamane, S., & Sakamoto, A. (1989). Pumpability of fresh concrete (pp. 125-133). Tokyo, Japan: Takenaka Technical Research Laboratory
34 Tanigawa, Y., Mori, H., & Noda, Y. (1991). Theoretical study on pumping of fresh concrete, Concrete Institute of Japan, Vol. 13.
35 Tattersall, G. H., & Banfill, P. F. (1983). The rheology of fresh concrete (p. 356). London, UK: Pitman Advanced Publishing Program.
36 Weber, R. (1968). The transport of concrete by pipeline. London, UK: Cement and Concrete Association.