DOI QR코드

DOI QR Code

Viscoelastic Properties of Fresh Cement Paste to Study the Flow Behavior

  • Choi, Myoungsung (Department of Safety Engineering, Dongguk University-Gyeongju) ;
  • Park, Kyoungsoo (Department of Civil and Environmental Engineering, Yonsei University) ;
  • Oh, Taekeun (Department of Safety Engineering, Incheon National University)
  • Received : 2016.03.23
  • Accepted : 2016.06.06
  • Published : 2016.09.30

Abstract

During concrete pumping, the migration and redistribution of particles occur in a pipe and the lubrication layer that forms between the bulk concrete and the pipe wall is the governing factor determining the flow behavior. In order to identify flow behavior of pumping, in this study, the viscoelastic properties related to the microstructural behavior of a flocculated suspension were examined by using dynamic oscillatory measurements. Cement paste is assumed to be a constituent material of the lubrication layer and ten cases of mixing design are employed by changing the proportions of mineral admixtures. The relationship between the yield stress obtained from the steady shear test and the dynamic modulus resulted from the oscillatory shear measurement was derived and the implications of the correlation are discussed. Moreover, based on the investigation of the viscoelastic properties with oscillatory measurements, the initial behavior of pumped concrete was analyzed systematically.

Keywords

References

  1. Ahuja, S. K. (1980). Effect of carbon black on the rheological properties of styrene n-butyl methacrylate copolymer melt. In G. Astarita, G. Marrucci, & L. Nicolais (Eds.), Rheology (2nd ed., pp. 469-476). New York, NY: Springer.
  2. Aleekseev, S. N. (1952). On the calculation of resistance in the pipes of concrete pumps. MekhanizatsiyaStroitel'stva, 9(1), 8-13.
  3. Asakura, S., & Oosawa, F. (1958). Interaction between particles suspended in solutions of macromolecules. Journal of Polymer Science, 33, 183-192. https://doi.org/10.1002/pol.1958.1203312618
  4. Atzeni, C., Massidda, L., & Sanna, U. (1985). Comparision between rheological models for portland cement pastes. Cement and Concrete Research, 15, 511-519. https://doi.org/10.1016/0008-8846(85)90125-5
  5. Banfill, P. F. G., Kitching, D. R. (1990) Use of a Controlled Stress Rheometer to Study the Yield Stress of Oilwell Cement Slurries. In International Conference on Rheology of Fresh Cement and Concrete, University of Liverpool, March 27-29.
  6. Browne, R., & Bamforth, P. (1977). Tests to establish concrete pumpability. Proceedings ACI Journal, 74(5), 193-203.
  7. Choi, M. S., Kim, Y. J., & Kwon, S. H. (2013a). Prediction on pipe flow of pumped concrete based on shear-induced particle migration. Cement and Concrete Research, 52(10), 216-224. https://doi.org/10.1016/j.cemconres.2013.07.004
  8. Choi, M. S., Roussel, N., Kim, Y. J., & Kim, J. K. (2013b). Lubrication layer properties during concrete pumping. Cement and Concrete Research, 45(3), 69-78. https://doi.org/10.1016/j.cemconres.2012.11.001
  9. Chow, T. W., McIntire, L. V., Kunze, K. R., & Cooke, C. E. (1988). The rheological properties of cement slurries: Effects of vibration, hydration conditions, and additives. SPE Production Engineering, 3, 543-550. https://doi.org/10.2118/13936-PA
  10. Cooke, C. E., Gonzalez, O. J., & Broussard, D. J. (1988). Primary cementing improvement by casing vibration during cement curing time. SPE Production Engineering, 3, 339-345. https://doi.org/10.2118/14199-PA
  11. Davis, S. S. (1971a). Viscoelastic properties of pharmaceutical semisolids III: Nondestructive oscillatory testing. Journal of Pharmaceutical Sciences, 60, 1351-1355. https://doi.org/10.1002/jps.2600600913
  12. Davis, S. S. (1971b). Viscoelastic properties of pharmaceutical semisolids IV: Destructive oscillatory testing. Journal of Pharmaceutical Sciences, 60, 1356-1365. https://doi.org/10.1002/jps.2600600914
  13. Ferry, J. D. (1970). Viscoelastic properties of polymers (2nd ed.). New York: Wiley
  14. Feys, R., & Schutter, G. D. (2005). Pipe flow velocity profiles of complex suspensions, like concrete. Gent, Belgium: Gent University.
  15. Figura, B. D., & Prud'homme, R. K. (2010). Hydrating cement pastes: Novel rheological measurement techniques of the acceleration of gelation. Journal of Rheology, 54, 1363-1378. https://doi.org/10.1122/1.3494571
  16. Franck, A. J. P. (1988). Rheological characterization of suspensions-comparison of steady and dynamic techniques. Uhlherr, 2, 327-329.
  17. Gandhi, K., & Salovey, R. (1988). Dynamic mechanical behavior of polymers containing carbon black. Polymer Engineering & Science, 28, 877-887. https://doi.org/10.1002/pen.760281402
  18. Grzeszczyk, S., & Kucharska, L. (1988). The influence of alkalis on rheological properties of fresh cement pastes. Cement and Concrete Research, 18, 1-8. https://doi.org/10.1016/0008-8846(88)90115-9
  19. Heath, D., & Tadros, T. F. (1983). Rheological investigations of the effect of addition of free polymer to concentrated sterically stabilised polystyrene latex dispersions. Faraday Discussions of the Chemical Society, 76, 203-218. https://doi.org/10.1039/dc9837600203
  20. Ingber, M. S., Graham, A. L., Mondy, L. A., & Fang, Z. (2009). An improved constitutive model for concentrated suspensions accounting for shear-induced particle migration rate dependence on particle radius. Int. J. Multiphase Flow, 35, 270-276. https://doi.org/10.1016/j.ijmultiphaseflow.2008.11.003
  21. Jacobsen, S., Haugan, L., Hammer, T. A., & Kalogiannidis, E. (2009). Flow conditions of fresh mortar and concrete in different pipes. Cement and Concrete Research, 39(1), 997-1006. https://doi.org/10.1016/j.cemconres.2009.07.005
  22. Kaplan, D., Larrard, F. D., & Sedran, T. (2005). Design of concrete pumping circuit. ACI Materials Journal, 102(2), 110-117.
  23. Keating, J., Hannant, D.J. (1990) The use of shear vane to measure the gel strength and dynamic yield strength of oil well cement slurries at high temperature and pressure. International Conference on Rheology of Fresh Cement and Concrete, University of Liverpool, March 27-29.
  24. Lobe, V. M., & White, J. L. (1979). An experimental study of the influence of carbon black on the rheological properties of a polystyrene melt. Polymer Engineering & Science, 19, 617-624. https://doi.org/10.1002/pen.760190905
  25. Lu, G., Wang, K., & Rudolphi, T. J. (2008). Modeling rheological behavior of highly flowable mortar using concepts of particle and fluid mechanics. Cement and Concrete Composite, 30, 1-12. https://doi.org/10.1016/j.cemconcomp.2007.06.002
  26. Marin, G. (1988). Oscillatory rheometry. In A. A. Collyer & D. W. Clegg (Eds.), Rheological Measurement (pp. 297-343). London, UK: Elsevier.
  27. Morinaga, S. (1973). Pumpability of concrete and pumping pressure in pipe line. Proceeding of a RILEM Seminar Held in Leeds, 3, 1-39.
  28. Nguyen, Q. D., & Boger, D. V. (1992). Measuring the flow properties of yield stress fluids. Annual Review of Fluid Mechanics, 24, 47-88. https://doi.org/10.1146/annurev.fl.24.010192.000403
  29. Onogi, S., Matsumoto, T., & Warashina, Y. (1973). Rheological properties of dispersions of spherical particles in polymer solutions. Transactions. Society of Rheology, 17, 175-190. https://doi.org/10.1122/1.549300
  30. Papo, A. (1988). The thixotropic behavior of white portland cement pastes. Cement and Concrete Research, 18, 595-603. https://doi.org/10.1016/0008-8846(88)90052-X
  31. Phillips, R. J., Armstrong, R. C., & Brown, R. A. (1992). A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Physics of Fluids, 4, 30-40. https://doi.org/10.1063/1.858498
  32. Rossig, M., & Frischbeton, F. V. (1974). Insbesondere von Leichtbeton, durch Rohrleitungen, 132, Dr.diss, RWTH. Opladen: Westdeutscher Verlag.
  33. Saaka, A. W., Jenningsa, H. M., & Shah, S. P. (2001). The influence of wall slip on yield stress and viscoelastic measurements of cement paste. Cement and Concrete Research, 31, 205-212. https://doi.org/10.1016/S0008-8846(00)00440-3
  34. Sakuta, M., Yamane, S., Kasami, H., & Sakamoto, A. (1979). Pumpability and rheological properties of fresh concrete. Proceeding of Conference on Quality Control of Concrete Structures, 2, 125-132.
  35. Schultz, M. A., & Struble, L. J. (1993). Use of oscillatory shear to study flow behavior of fresh cement paste. Cement and Concrete Research, 23, 273-282. https://doi.org/10.1016/0008-8846(93)90092-N
  36. Tattersall, G. H., & Banfill, E. E. G. (1983). The rheology of fresh concrete. London, UK: Pitman.
  37. Vassiliev, V. (1953). Flow regime in a concrete pipe. Edition, 7, 42-44.
  38. Weber, R. (1968). The transport of concrete by pipeline. London, UK: Cement and Concrete Association.
  39. Xuequan, W., & Roy, D. M. (1984). Slag cement utilization: Rheological properties and related characterization. Cement and Concrete Research, 14, 521-528. https://doi.org/10.1016/0008-8846(84)90128-5
  40. Yang, M. C., Scriven, L. E., & Macosko, C. W. (1986). Some rheological measurements on magnetic iron oxide suspensions in silicon oil. Journal of Rheology, 30, 1015-1029. https://doi.org/10.1122/1.549892

Cited by

  1. Experimental Observation on Variation of Rheological Properties during Concrete Pumping vol.12, pp.1, 2016, https://doi.org/10.1186/s40069-018-0310-3
  2. Rheological Behavior of Fresh Cement Pastes vol.3, pp.4, 2016, https://doi.org/10.3390/fluids3040106
  3. Time gap effect on bond strength of 3D-printed concrete vol.14, pp.1, 2016, https://doi.org/10.1080/17452759.2018.1500420
  4. An evaluation of yield and Maxwell fluid behaviors of fly ash suspensions in alkali-silicate solutions vol.52, pp.6, 2016, https://doi.org/10.1617/s11527-019-1429-7
  5. L-Box Form Filling of Thixotropic Cementitious Paste and Mortar vol.13, pp.7, 2016, https://doi.org/10.3390/ma13071760
  6. Modeling SAOS Yield Stress of Cement Suspensions: Microstructure-Based Computational Approach vol.13, pp.12, 2016, https://doi.org/10.3390/ma13122769
  7. Test protocol and rheological model influence on determining the rheological properties of cement pastes vol.44, pp.None, 2016, https://doi.org/10.1016/j.jobe.2021.103206