DOI QR코드

DOI QR Code

밀양납석광상의 열수변질 특징

Hydrothermal Alteration of Miryang Pyrophyllite Deposit

  • 문동혁 (국립문화재연구소 보존과학연구실) ;
  • 곽경윤 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 이부영 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 구효진 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 조현구 (경상대학교 지질과학과 및 기초과학연구소)
  • Moon, Dong Hyeok (Division of Conservation Science, National Research Institute of Cultural Heritage) ;
  • Kwak, Kyeong Yoon (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Lee, Bu Yeong (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Koo, Hyo Jin (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Cho, Hyen Goo (Department of Geology and Research Institute of Natural Science, Gyeongsang National University)
  • 투고 : 2015.09.09
  • 심사 : 2015.09.25
  • 발행 : 2015.09.30

초록

밀양납석광상의 지표시료와 시추시료의 광물조성과 화학조성 분석결과를 통하여 열수변질양상과 형성 환경을 연구하였다. 밀양납석광상의 열수변질대는 광물조합을 근거로 주로 엽납석-딕카이트(석영) 광물조합을 가지며 납석광체에 해당하는 강이질변질대와 견운모-석영-딕카이트를 주로 수반하는 필릭변질대 및 녹니석-석영이 주된 광물조합으로 수반되는 프로필라이트변질대 등 세 가지로 구분된다. 지표 및 시추시료의 수평적 수직적 변질양상 및 지화학적 특성을 통하여 연구지역 내 납석광체는 수차례의 열수변질작용을 통하여 형성되었으며, 현재 채광이 이루어지고 있는 지표광체로부터 남쪽-남동쪽 심부에 이르기까지 대규모로 연장되어 있을 것으로 여겨진다. 납석광체의 광물조합 및 엽납석의 다구조형(2M) 등을 통하여 밀양납석광상의 형성온도는 약 $300-350^{\circ}C$ 내외일 것으로 추측된다.

Hydrothermal alteration patterns and environment are studied by mineral assemblages and chemical analyses of surface and core samples from Miryang pyrophyllite deposit. The alteration zones of this deposit can be divided into three zones on the basis of mineral assemblage; advanced argillic, phyllic, and propylitic zone. Advanced argillic zone mainly consists of pyrophyllite-dickite (-quartz) and corresponds to principal mining ore. The common mineral assemblage of phyllic zone and propylitic zone are sericite-quartz-dickite and chlorite-quartz, respectively. Horizontal and vertical alteration patterns and major element geochemistry indicate that pyrophyllite ores have been formed several times by hydrothermal alteration. And it also suggests that the huge ore bodies may be extended from the deeper part of recent quarries to the south-southeastern direction. The paragenesis of ore minerals and polytype (2M) suggest that ore deposit was formed at about $300-350^{\circ}C$.

키워드

참고문헌

  1. Barnes, H.L. (1979) Geochemistry of Hydrothermal Ore Deposits (2nd ed.). John Wiley & Sons, New York, 798p.
  2. Brindley, G.W. and Wardle, R. (1970) Monoclinic and triclinic forms of pyrophyllite and pyrophyllite anhydride. American Mineralogist, 55, 1259-1272.
  3. Cho, H.G. (1998) Pyrophyllite deposits. In: Woo, Y.G. et al. (eds.) Ore Deposits of Korea, Memoirs of Prof. Hee-In Park's Retirement, Seoul, Korea, 189-205 (in Korean).
  4. Cho, H.G. (2000) Pyrophyllite and its application. Journal of the Mineralogical Society of Korea (Minerals and Industry), 13, 28-38 (in Korean).
  5. Choo, C.O. (1996) Mineralogy and genesis of Napseok (sericite, pyrophyllite, dickite) in the Kimhae area, Korea. Ph.D. Thesis, Seoul National University, Seoul, 190p.
  6. Choo, C.O. and Kim, Y.K. (2005) Chemical characterization of oscillatory zoned tourmaline from diaspore nodule, an aluminum-rich clay deposit, Milyang, South Korea. Journal of the Mineralogical Society of Korea, 18, 227-236 (in Korean with English abstract).
  7. Eberl, D. (1979) Synthesis of pyrophyllite polytypes and mixed layer. American Mineralogist, 64, 1019-1096.
  8. Ellis, A.J. and McFadden, I.M. (1972) Partial molar volume of ions in hydrothermal solutions. Geochimica Cosmochimica Acta, 36, 413-426. https://doi.org/10.1016/0016-7037(72)90032-4
  9. Hass, H. and Holdaway, M.J. (1973) Equilibria in the system $Al_2O_3-SiO_2-H_2O$ involving the stability limits of pyrophyllite, and thermodynamic data of pyrophyllite. American Journal of Science, 273, 449-464. https://doi.org/10.2475/ajs.273.6.449
  10. Helgeson, H. (1969) Thermodynamics of hydrothermal system at elevated temperature and pressure. American Journal of Science, 267, 729-804. https://doi.org/10.2475/ajs.267.7.729
  11. Hemley, J.J. and Jones, W.R. (1964) Chemical aspects of hydrothermal alteration with emphasis on hydrogen metamorphism. Economic Geology, 59, 538-569. https://doi.org/10.2113/gsecongeo.59.4.538
  12. Hemley, J.J., Montoya, J.W., Marinenko, J.W. and Luce, R.W. (1980) Equilibria in the system $Al_2O_3-SiO_2-H_2O$ and some general implications for alteration/mineralization processes. Economic Geology, 75, 210-228. https://doi.org/10.2113/gsecongeo.75.2.210
  13. Hong, S.H. and Choi, P.Y. (1988) Geological report of the Yuch'on sheet. Korea Institute of Energy and Resources, 60p.
  14. Koh, S.M., Takaki, T., Kim, M.Y. Naito, K., Hong, S.S., and Sudo, S. (2000) Geological and geochemical characteristics of the hydrothermal clay alteration in south Korea. Resource Geology, 50, 229-242. https://doi.org/10.1111/j.1751-3928.2000.tb00072.x
  15. Kim, S.J., Kim, J.J., and Choo, C.O. (1992) Mineralogy and genesis of hydrothermal deposits in the southeastern part of Korean peninsula: (3) Miryang napseok deposit. Journal of Mineralogical Society of Korea, 5, 93-101 (in Korean with English abstract).
  16. Kim, S.W., Lee, J.Y., Kim, Y.K., and Koh, I.S. (1991) Petrology of the cretaceous volcanic rocks in southern Yuchon minor basin. Journal of the Geology Society of Korea, 27, 24-39.
  17. Kwack, K.W., Hwang, J.Y., Oh, J.H., Yoon, K.T., and Choi, S.J. (2009) Geological occurrence and mineralogy of pyrophyllite deposits in the Jinhae Area. Journal of Mineralogical Society of Korea, 22, 163-176 (in Korean with English abstract).
  18. Lee, H.K., Moon, H.-S., and Oh, M.-S. (2007) Economic Mineral Deposits in Korea. Acanet, Seoul, 498-514 (in Korean).
  19. Lee, K.W., Moon, H.S., Song, Y.G., and Kim, I.J. (1993) Wall rock alteration and genetic environment of the Miryang pyrophyllite deposit. Journal of the Mining Geology of Korea, 26, 289-309 (in Korean with English abstract).
  20. Meyer, C. and Hemley, J.J. (1967) Wall rock alteration. In Barnes, H.L. (ed) Geochemistry of Hydrothermal Ore Deposits. Holt, Rinehart and Winston, 166-235.
  21. Oh, D.G., Chon, H.T., and Min, K.W. (1992) A geochemical study on pyrophyllite deposits and andesitic wall-rocks in the Miryang area, Kyeongnam province. Journal of the Mining Geology of Korea, 25, 27-39 (in Korean with English abstract).
  22. Park, H.I., Chang, H.W., and Moon, H.S. (1994) Processes of formation of metallic and non-metallic mineral deposits in the Gyeongsang Basin. KOSEF Report 91-06-00-03, 305p (in Korean with English abstract).
  23. Robbie, R.A. and Waldbaum, D.R. (1968) Thermodynamic properties of minerals and related substances at 298.15K and 1 atmosphere pressure and at higher temperatures. U.S. Geological Survey Bulletin, 1259, 256p.
  24. Rose, A.W. (1970) Zonal relations of wall rock alteration of sulfide distribution at porphyry copper deposits. Economic Geolology, 65, 920-936. https://doi.org/10.2113/gsecongeo.65.8.920
  25. Rosenberg. R.E. (1974) Pyrophyllite solid solutions in the system $Al_2O_3-SiO_2-H_2O$. American Mineralogist, 59, 154-260.
  26. Rosenberg. R.E. and Cliff, G. (1980) The formation of pyrophyllite solid solutions. American Mineralogist, 65, 1217-1219.
  27. Sang, K.N., Chung, W.W. and Lee, Y.J. (1996) Hydrothermal system of diaspore-dumortierite minerals from Korea. Journal of the Economy and Environmental Geology of Korea, 29, 439-446 (in Korean with English abstract).
  28. Takagi, T., Koh, S.M., Kim, M.Y., Naito, K. and Sudo, S. (2000) Geology and hydrothermal alteration of the Miryang pyrophyllite deposit, Southeast Korea. Resource Geology, 50, 243-256. https://doi.org/10.1111/j.1751-3928.2000.tb00073.x
  29. Won, C.K. (1987) Igneous activity. In: Lee, D.S. (ed.) Geology of Korea, Kyohak-sa, Seoul, Korea, 287-344.
  30. Yoo, J.H., Koh, S.M., and Moon, D.H. (2011) Mineralogical and geochemical characteristics and designation of key beds for the effective surveys in the Jeonnam clay deposits. Journal of Mineralogical Society of Korea, 24, 265-278 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2011.24.4.265