DOI QR코드

DOI QR Code

고체 입자와 유동방향 변환에 의한 로켓 모터 내 음향 감쇠에 대한 고찰

Study on Acoustic Attenuation due to Particles and Flow Turning in Rocket Motors

  • Kim, Taejin (Department of Mechanical Engineering, Hanbat National University) ;
  • Sung, Hong-Gye (School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Seo, Seonghyeon (Department of Mechanical Engineering, Hanbat National University)
  • 투고 : 2015.04.08
  • 심사 : 2015.08.25
  • 발행 : 2015.09.01

초록

본 논문은 고체 로켓 모터 연소실 내의 연소과정 중 발생하는 연소 불안정 현상을 억제하는 여러 요소들 중 입자에 의한 감쇠와 유동방향 변환 감쇠에 대한 선행연구의 연구결과를 정리 분석하였다. 입자에 의한 감쇠는 연소실 내에서 발생하는 고주파 연소불안정을 억제하는데 있어 가장 효과적이며 입자의 직경과 질량 분율에 영향을 받는다. 한편 입자에 의한 감쇠에 비해 적은 감쇠량을 갖는 유동방향 변환 감쇠는 추진제의 구조에 따라 변하며, 추진제 표면에서 생성된 와도를 고려한다면 펌핑에 의한 증폭을 고려해야한다. 그러나 추진제의 형상이 원통형일 경우 유동방향 변환 감쇠와 펌핑에 의한 증폭의 크기는 같아지고 상쇄가 일어나 연소 안정성을 보다 쉽게 평가할 수 있다.

This paper includes summarization and analysis of previous research results on acoustic attenuation due to particles and flow turning in rocket motors among various damping parameters. Particle damping is the most effective mechanism in suppressing high-frequency combustion instabilities occurring in rocket combustion chambers, which is dependent on the size and the mass fraction of particles. Relatively weak attenuation by flow turning compared to particle damping depends on the geometry of propellant and a combustion chamber. Pumping driving effects need to be taken into account when realizing vorticity generation on the propellant surface. However, its driving effects become cancelled out by flow turning loss when the propellant geometry is cylindrical.

키워드

참고문헌

  1. Blomshield, F. S., "Lessons Learned In Solid Rocket Combustion Instability," 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Jul. 2007, pp.1-19.
  2. Kim, H. C., Kim, J. S., Moon, H. J., Sung, H. G., Lee, H. K., Ohm, W. S., and Lee, D. H., "Linear Stability Analysis for Combustion Instability in Solid Propellant Rocket," Journal of the Korean Society of Propulsion Engineers, Vol. 17, no. 5, Oct. 2013, pp.27-36. https://doi.org/10.6108/KSPE.2013.17.5.027
  3. Laidler, T. J., and Richardson, E. G., "The Absorption of Supersonics in Smokes," The Journal of the Acoustical Society of America, Vol. 9, no. 3, Jan. 1938, pp.217-223. https://doi.org/10.1121/1.1915928
  4. Epstein, P. S., and Carhart, R. R., "The Absorption of Sound in Suspensions and Emulsions. I. Water Fog in Air." The Journal of the Acoustical Society of America, Vol. 25, no. 3, Sep. 1953, pp.553-565. https://doi.org/10.1121/1.1907107
  5. Zink, J. W., and Delsasso, L., "Attenuation and Dispersion of Sound by Solid Particles Suspended in a Gas," the Journal of the Acoustical Society of America, Vol. 30, no. 8, Agu. 1958, pp.765-771. https://doi.org/10.1121/1.1909757
  6. Dobbins, R. A., and Temkin, S., "Measurements of Particulate Acoustic Attenuation," AIAA Journal, Vol. 2, no. 6, Jun. 1964, pp.1106-1111. https://doi.org/10.2514/3.2483
  7. Perry, E. H., "Investigations of the T-burner and its Role in Combustion Instability Studies," Ph. D. Thesis, California Institute of Technology, 1970.
  8. Blomshield, F. S., Stalnaker R. A., and Beckstead, M. W., "Combustion Instability Additive Investigation," AIAA Joint Propulsion Meeting, no. 99-2226, Jun. 1999.
  9. Blomshield, F. S., Nguyen, S., Matheke, H., Atwood, A., and Bui, T., "Acoustic Particle Damping of Propellants Containing Ultra-Fine Aluminum," AIAA Paper, 3722, Jul. 2004.
  10. Culick, F. E. C., "Nonlinear Behavior of Acoustic Waves in Combustion Chambers," Acta Astronautica, Vol. 3, no. 9, Apr. 1975, pp.715-734. https://doi.org/10.1016/0094-5765(76)90107-7
  11. Culick, F. E. C., "The Stability of One-Dimensional Motions in a Rocket Motor," Combustion Science and Technology, Vol. 7, no. 4, 1973, pp.165-175. https://doi.org/10.1080/00102207308952355
  12. Flandro, G. A., "Effects of Vorticity on Rocket Combustion Stability," Journal of Propulsion and Power, Vol. 11, no. 4, Jul. 1995, pp.607-625. https://doi.org/10.2514/3.23887
  13. Flandro, G. A., "On Flow Turning," 1995.
  14. Kim, K. M., Kang, K. T., and Yoon, J. K., "Linear Stability Analysis in a Solid Propellant Rocket Motor," Transactions of the Korean Society of Mechanical Engineers, Vol. 19, no. 10, Oct. 1995, pp.2637-2646. https://doi.org/10.22634/KSME.1995.19.10.2637
  15. Yoon, M. W. and Kang, K. T., "A Study on the Suppression of the Combustion Instability of the Solid Rocket Motor Using the Acoustic Damping Effect of the Particles," Journal of the Korean Society for Aeronautical and Space Science, Vol. 27, no. 1, Feb. 1999, pp. 106-112.
  16. Culick, F. E. C., and Kuentzmann, P., "Unsteady Motions in Combustion Chambers for Propulsion Systems," No. AC/323 (AVT-039) TP/103. NATO RESEARCH AND TECHNOLOGY ORGANIZATION NEUILLY-SUR-SEINE (FRANCE), Dec. 2006.
  17. Culick, F. E. C., "Nonlinear Behavior of Acoustic Waves in Combustion Chambers-II," Acta Astronautica, Vol. 3, no. 9-10, Oct. 1976, pp.735-757. https://doi.org/10.1016/0094-5765(76)90108-9
  18. Kraeutle, K. J., "Particle Size Analysis in Solid Propellant Combustion Research," Experimental Diagnostics in Combustion of Solids, New York, American Institute of Aeronautics and Astronautics, Inc., 1978, pp.76-108.
  19. Ko, T. H., Lee, S. H., Kim, H. M., Yang, H. S., and Yoon, W. S., "Experimental Study on Aluminum Powder Combustion by Ignition of the Propellant," KSPE Fall Conference, Vol. 39, Nov. 2012, pp.555-561.
  20. Culick, F. E. C., and Yang, V., "Prediction of the Stability of Unsteady Motions in Solid-Propellant Rocket Motors," Chapter 18 in Nonsteady Burning and Combustion Stability of Solid Propellants, Progress in Astronautics and Aeronautics, Vol. 143, 1992, pp.719-779.