• Title/Summary/Keyword: Flow Turning Loss

Search Result 35, Processing Time 0.027 seconds

An experimental study on the secondary flow and losses in turbine cascades (익렬 통로 내의 2차유동 및 손실에 관한 실험 연구)

  • Jeong, Yang-Beom;Sin, Yeong-Ho;Kim, Sang-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.12-24
    • /
    • 1998
  • The paper presents the mechanism of secondary flows and the associated total pressure losses occurring in turbine cascades with turning angle of about 127 and 77 degree. Velocity and pressure measurements are taken in seven traverse planes through the cascade passage using a prism type five hole probe. Oil-film flow visualization is also conducted on blade and endwall surfaces. The characteristics of the limiting streamlines show that the three dimensional separation is an important flow feature of endwall and blade surfaces. The larger turning results in much stronger contribution of the secondary flows to the loss developing mechanism. A large part of the endwall loss region at downstream pressure side is found to be very thin when compared to that of the cascade inlet and suction side endwall. Evolution of overall loss starts quite early within the cascade and the rate of the loss growth is much larger in the blade of large turning angle than in the blade of small turning angle.

The Effect of Tip Clearance Height on the Three-Dimensional Flow and Aerodynamic Loss in the Wake Region of a High-Turning Turbine Rotor Cascade (끝틈새가 선회각이 큰 터빈 동익 익렬 후류영역에서의 3차원유동 및 압력손실에 미치는 영향)

  • Kwon, Hyun-Goo;Park, Jin-Jae;Lee, Sang-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.5 s.26
    • /
    • pp.36-42
    • /
    • 2004
  • The effect of tip clearance height on the three-dimensional flow and aerodynamic loss in the wake region of a high-turning turbine rotor cascade has been investigated with a miniature cone-type five-hole probe. Distributions of velocity magnitude, secondary velocity vectors, and total-pressure loss coefficient are presented for three tip gap-to-span ratios of h/s = 0.0, 0.5 and 1.0 percent. The result shows that with the increment of h/s, tip leakage vortex tends to be intensified and aerodynamic loss due to the leakage vortex is increased as well. In the case of h/s = 1.0 percent, aerodynamic loss in the tip-leakage flow region is found dominant in comparison with that in the passage vortex region. With increasing h/s, mass-averaged secondary loss coefficient has a greater portion in the mass-averaged total-pressure loss coefficient.

Effects of Incidence Angle on the Three-Dimensional Flow and Aerodynamic Loss Downstream of a High-Turning Turbine Rotor Blade (입사각이 고선회 터빈 동익 하류에서의 3차원 유동 및 압력손실에 미치는 영향)

  • Chae, Byoung-Joo;Lee, Sang-Woo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2591-2596
    • /
    • 2007
  • The effect of incidence angle on the three-dimensional flow and aerodynamic loss in the downstream region of a high-turning turbine rotor blade has been investigated with a straight miniature five-hole probe. The incidence angle is changed to be +10, +5, 0, -10, -20, -30 and -40 degrees. The results show that the positive incidence reinforces the three-dimensional vortical flows within the turbine passage including the passage vortex, but the negative incidence weaken them significantly. A small increment in the positive incidence angle results in a remarkable aerodynamic loss increase, while increasing the incidence angle in the negative range leads to a very small change in the aerodynamic loss.

  • PDF

Three-Dimensional Flow and Aerodynamic Loss Downstream of a Turbine Rotor Blade with a Squealer Tip (스퀄러팁 터빈 동익 하류에서의 3차원 유동 및 압력손실)

  • Chae, Byoung-Joo;Lee, Sang-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.913-920
    • /
    • 2006
  • Three-dimensional flow and aerodynamic loss in the tip-leakage flow region of a high-turning first-stage turbine rotor blade with a squealer tip have been measured with a straight miniature five-hole probe for the tip gap-to-chord ratio, h/c, of 2.0%. This squealer tip has a indent-to-chord ratio, $h/{st}/c$, of 5.5%. The results are compared with those for a plane tip $(h_{st}/c=0.0%)$. The squealer tip tends to reduce the mass flow through the tip gap and to suppress the development of the tip-leakage vortex. Therefore, it delivers lower aerodynamic loss in the near-tip region than the plane tip does. At the mid-span, however, the aerodynamic loss has nearly the same value for the two different tips.

Effects of the Leakage Tangential Velocity on the Leakage Flow Path in Shrouded Axial Compressor Cascades (축류압축기 슈라우드 캐비티내의 누수유동 경로에 대한 연구)

  • Sohn, Dae-Woong;Kim, Tong-Beum;Song, Seung-Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.311-317
    • /
    • 2005
  • Measurements of the leakage flow in the shrouded cavity were performed in axial compressor cascades at $Re=2.6{\times}10^5$. This paper describes the effects of the leakage flow tangential velocity on kinematics of the leakage flow in the shrouded cavity and consequent overall loss and exit flow turning at stator blade row downstream. Flow data and flow visualization images consistently indicate that leakage flow circumferentially migrates 2, 4 and 5 blade passages in the direction of rotation for ${\upsilon}_y/c=0.09$, 0.35 and 0.45, respectively where ${\upsilon}_y$ is the leakage tangential velocity and c is the mainstream velocity. The leakage flow contracts to a jet across the seal-tooth resulting in an increase in the leakage axial velocity-doubling the leakage axial velocity in upstream cavity compared to that in the downstream cavity. Consequently, two flow regions are distinguished before and after the seal-tooth. As increasing the leakage tangential velocity, the overall loss downstream of stator blade row decreases and the exit flow turning in the range of span. from the hub endwall to 15% increases while the decreases in the flow turning from 15% to 30% span is observed.

  • PDF

Experimental Study on the Performance Characteristics of the Diffuser as a Relation of the Variation of Vane Turning Angle (베인 회전각의 변화에 따른 디퓨저의 성능특성에 관한 실험적 연구)

  • Cho, Sung-Kook;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.2 s.3
    • /
    • pp.74-80
    • /
    • 1999
  • Recently, impressive gains of performance and efficiency with apparently little or no loss in flow range have been seen with the use of LSVD(Low Solidity Vaned Diffuser) over vaneless diffuser. Experiments of the effects of the vane turning angle variations(positive, negative, zero), with the other design parameters fixed, on the performance and flow range were carried out. Diffusers with a zero turning angle have the best characteristics in terms of performance and efficiency and the FFT results show different frequency characteristics due to vane turning angles in low flow range.

  • PDF

Study on Acoustic Attenuation due to Particles and Flow Turning in Rocket Motors (고체 입자와 유동방향 변환에 의한 로켓 모터 내 음향 감쇠에 대한 고찰)

  • Kim, Taejin;Sung, Hong-Gye;Seo, Seonghyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.9
    • /
    • pp.838-844
    • /
    • 2015
  • This paper includes summarization and analysis of previous research results on acoustic attenuation due to particles and flow turning in rocket motors among various damping parameters. Particle damping is the most effective mechanism in suppressing high-frequency combustion instabilities occurring in rocket combustion chambers, which is dependent on the size and the mass fraction of particles. Relatively weak attenuation by flow turning compared to particle damping depends on the geometry of propellant and a combustion chamber. Pumping driving effects need to be taken into account when realizing vorticity generation on the propellant surface. However, its driving effects become cancelled out by flow turning loss when the propellant geometry is cylindrical.

Experimental study on the performance characteristics of the diffuser due to the variation of vane angle (베인각도의 변화에 따른 디퓨저의 성능특성에 관한 실험적 연구)

  • Cho, S. K.;Kang, S. H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.142-148
    • /
    • 1998
  • Recently for the impressive gains of performance and efficiency over vaneless diffuser with apparently little or no loss in flow range, the use of LSVD(Low Solidity Vaned Diffuser) is well recommended. The experiments on the effect of the vane turning angle variation(positive, negative, zero) with other design parameters fixed on the performance and flow range were carried out. Diffuser with zero turning angle has the best characteristics in terms of performance and efficiency and The FFT results show the different frequency characteristics due to the vane turning angle in low flow range.

  • PDF

Numerical simulation of tip clearance flows through linear turbine cascades (선형터빈 익렬의 익단간극유동에 대한 수치해석적 연구)

  • Lee, Hun-Gu;Yu, Jeong-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.813-821
    • /
    • 1997
  • Three-dimensional turbulent incompressible flow through the tip clearance of a linear turbine rotor cascade with high turning angle has been analyzed numerically. As a preliminary study to predict the tip clearance loss realistically, a generalized k-.epsilon. model derived by RNG (renormalized group) method is used for the modeling of Reynolds stresses to account for the strain rate of turbulent flow. The effects of the tip clearance flow on the passage vortex, the total pressure loss are considered qualitatively. The existences of vena contract and tip clearance vortex have been confirmed and it has been shown that as the size of the tip clearance increases, the accumulated flow through the tip clearance and the total pressure loss downstream of the cascade increase.

Modeling of Deviation Angle and Pressure Loss Due to Rotor Tip Leakage Flow Effects in Axial Turbines (축류터빈에서 끝간격 유동에 의한 편향각과 압력손실의 모형)

  • Yoon, Eui Soo;Park, Moo Ryong;Chung, Myung Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1591-1602
    • /
    • 1998
  • Simple spanwise distribution models of deviation angle and pressure loss coefficient due to the tip leakage flow are formulated for use in association with the streamline curvature method as a flow analysis. Combining these new models with the previous deviation and loss models due to secondary flow, a robust streamline curvature method is established for flow analysis of single-stage, subsonic axial turbines with wide ranges of turning angle, aspect ratio and blading type. At the exit from rotor rows, the flow variables are mixed radially according to a spanwise transport equation. The proposed streamline curvature method is tested against a forced vortex type turbine as well as a free vortex type one. The results show that the spanwise variations of flow angle, axial velocity and loss coefficients at rotor exit are predicted with good accuracy, being comparable to a steady three-dimensional Navier-Stokes analysis. This simple and fast flow analysis is found to be very useful for the turbine design at the initial design phase.