DOI QR코드

DOI QR Code

Thermal Management on 3D Stacked IC

3차원 적층 반도체에서의 열관리

  • Kim, Sungdong (Dept. of Mechanical System Design, Seoul National University of Science and Technology)
  • 김성동 (서울과학기술대학교 기계시스템디자인공학과)
  • Received : 2015.06.04
  • Accepted : 2015.06.23
  • Published : 2015.06.30

Abstract

Thermal management becomes serious in 3D stacked IC because of higher heat flux, increased power generation, extreme hot spot, etc. In this paper, we reviewed the recent developments of thermal management for 3D stacked IC which is a promising candidate to keep Moore's law continue. According to experimental and numerical simulation results, Cu TSV affected heat dissipation in a thin chip due to its high thermal conductivity and could be used as an efficient heat dissipation path. Other parameters like bumps, gap filling material also had effects on heat transfer between stacked ICs. Thermal aware circuit design was briefly discussed as well.

3차원 적층 반도체에서의 열관리를 위한 연구 동향에 대해서 살펴보았다. 적층 구조는 평면구조와 달리 단위 패키지당 발열량 증가, 단위 바닥면적당 전력 소비량 증가, 이웃 칩의 영향으로 과열 가능성의 증가, 냉각구조 추가의 어려움, 국부 열원의 발달 등으로 발열 문제가 매우 심각해질 수 있으며, 특히 국부 열원은 적층을 위해 칩 두께가 얇아짐으로 더욱 심화되고 있어 이를 고려한 발열관리가 필요하다. 구리 TSV는 높은 열전도도를 이용하여 열원의 열을 효과적으로 주변으로 배출하는 역할을 하며 범프 및 gap 충진 재료, 적층 순서와 함께 적층 반도체의 열확산에 큰 영향을 미친다. 이는 실험으로나 수치해석으로 확인되고 있으며, 향후 적층 구조의 각 구성 요소들의 열 특성을 반영한 회로 설계가 이루어질 것으로 예상된다.

Keywords

References

  1. K. Hummler, B. Sapp, J. R. Lloyd, S. Kruger, S. Olson, S. B. Park, B. Murray, D. Jung, S. Cain, A. Park, D. Ferrone and I. Ali, "TSV and Cu-Cu Direct Bond Wafer and Package-Level Reliability" 2013 IEEE 63rd Electronic Components and Technology Conference (ECTC), 41 (2013).
  2. M. Y. Tsai, P. S. Huang, C. Y. Huang, P. C. Lin, L. Huang, M. Chang, S. Shih and J. P. Lin, "An investigation into warpages, stresses and keep-out zone in 3D through-silicon-via DRAM packages", Microelectronics Reliability, 54(12), 2898 (2014). https://doi.org/10.1016/j.microrel.2014.08.017
  3. D. Liu and S. Park, "Three-Dimensional and 2.5 Dimensional Interconnection Technology: State of the Art", Journal of Electronic Packaging, 136(1), 014001 (2014). https://doi.org/10.1115/1.4026615
  4. Y. H. Cho, S. E. Kim and S. Kim, "Wafer Level Bonding Technology for 3D Stacked IC", J. Microelectron. Packag. Soc., 20(1), 7 (2013). https://doi.org/10.6117/KMEPS.2013.20.1.007
  5. J. Jeong, S. Jang, W. Choi, Y. Kim and K. Chun, "Thermal structure design for enhanced heat spreading in 3D ICs", 2013 IEEE TENCON Spring Conference, 544 (2013).
  6. J. H. Lau and T. G. Yue, "Effects of TSVs (through-silicon vias) on thermal performances of 3D IC integration systemin- package (SiP)", Microelectronics Reliability, 52(11), 2660 (2012). https://doi.org/10.1016/j.microrel.2012.04.002
  7. D. J. Frank, "Power-constrained CMOS scaling limits", IBM Journal of Research and Development, 46(2), 235 (2002). https://doi.org/10.1147/rd.462.0235
  8. Y. Shin, S. E. Kim and S. Kim, "Analysis of Thermal Effects of Through Silicon Via in 3D IC using Infrared Microscopy", IITC/MAM Conference 2015
  9. J. Ma, S. E. Kim and S. Kim, "The Effects of Cu TSV on the Thermal Conduction in 3D Stacked IC", J. Microelectron. Packag. Soc., 21(3), 1 (2014). https://doi.org/10.6117/kmeps.2014.21.3.001
  10. S. Cho, Y. Sato, V. Sundaram, Y. Joshi and R. Tummala, "Experimental demonstration of the effect of copper TPVs (Through package vias) on thermal performance of glass interposers", 2014 Electronic Components & Technology Conference, 1247. (2014).
  11. B. Sung, "Thermal enhancement of stacked dies using thermal vias", Master thesis, the university of Texas Arlington, (2006).
  12. G. Wielgoszewski, G. Jozwiak, M. Babij, T. Baraniecki, R. Geer and T. Gotszalk, "Investigation of thermal effects in through-silicon vias using scanning thermal microscopy", Micron, 66, 63 (2014). https://doi.org/10.1016/j.micron.2014.05.008
  13. K. Yamada, T. Matsuda, H. Iwata, T. Hatakeyama, M. Ishizuka and T. Ohzone, "Analysis of temperature distribution in stacked IC with a thermal simulation and a specially designed test structure", International Conference on Electronics Packaging (ICEP), 724 (2014).
  14. L. Choobineh, T. Uehling, N. Vo and A. Jain, "Experimental Measurement of the Thermal Performance of a Two-Die 3D Integrated Circuit (3D IC)", Asme 2013 InterPACK2013, 1 (2013).
  15. H. Oprins, V. O. Cherman, B. Vandevelde, G. Van der Plas, P. Marchal and E. Beyne, "Numerical and experimental characterization of the thermal behavior of a packaged DRAMon- logic stack" IEEE 62nd Electronic Components and Technology Conference (ECTC), 1081 (2012).
  16. K. Weide-Zaage, A. Moujbani and J. Kludt, "Simulation in 3D integration and TSV", 2014 IEEE 5th Latin American Symposium on Circuits and Systems (LASCAS), 1 (2014).
  17. Y. Pi, H. Sun, J. Huang, W. Wang, J. Chen, Y. Jin and B. Cao, "Preliminary validation of entransy-based thermal management for 3D IC", 14th International Conference on Electronic Packaging Technology (ICEPT), 535 (2013).
  18. A. Fourmigue, G. Beltrame and G. Nicolescu, "Efficient transient thermal simulation of 3D ICs with liquid-cooling and through silicon vias", Design, Automation and Test in Europe Conference and Exhibition (DATE), 1 (2014).
  19. L. Choobineh and A. Jain, "An explicit analytical model for rapid computation of temperature field in a three-dimensional integrated circuit (3D IC)", International Journal of Thermal Sciences, 87(C), 103 (2015). https://doi.org/10.1016/j.ijthermalsci.2014.08.012
  20. J. S. Lan and M. L. Wu, "An analytical model for thermal failure analysis of 3D IC packaging", 15th international conference on Thermal, mechanical and multi-physics simulation and experiments in microelectronics and microsystems (eurosime), 1 (2014).
  21. S. Melamed, F. Imura, M. Aoyagi, H. Nakagawa, K. Kikuchi, M. Hagimoto and Y. Matsumoto, "Method for back-annotating per-transistor power values onto 3D IC layouts to enable detailed thermal analysis", 2014 International Conference on Electronics Packaging (ICEP), 239 (2014).

Cited by

  1. Effect of Interface on Thermal Conductivity of Clad Metal through Thickness Direction for Heat Sink vol.22, pp.3, 2015, https://doi.org/10.6117/kmeps.2015.22.3.067