DOI QR코드

DOI QR Code

Hydration and Insulation Characteristics of a Ground Granulated Blast Furnace Slag Based Non-Sintered Cement Using Circulating Fluidized Bed Combustion Ash as a Activator

순환유동층 애시를 자극제로 사용한 고로슬래그 미분말 기반 비소성 시멘트의 수화 및 단열 특성

  • Lee, Seung-Heun (Dept. of Materials Science and Engineering, Kunsan National University) ;
  • Lee, Gang-Hyuk (Dept. of Materials Science and Engineering, Kunsan National University) ;
  • Yoo, Dong-Woo (Dept. of Materials Science and Engineering, Kunsan National University) ;
  • Ha, Ju-Hyung (Advanced Material R&D Team, Hyundai Institute of Construction Technology) ;
  • Cho, Yun-Gu (Advanced Material R&D Team, Hyundai Institute of Construction Technology)
  • 이승헌 (군산대학교 신소재 공학과) ;
  • 이강혁 (군산대학교 신소재 공학과) ;
  • 유동우 (군산대학교 신소재 공학과) ;
  • 하주형 (현대건설 연구개발본부) ;
  • 조윤구 (현대건설 연구개발본부)
  • Received : 2014.10.06
  • Accepted : 2015.02.04
  • Published : 2015.06.30

Abstract

As people have more interest in environment-friendly structures recently, many researchers are actively researching non-sintered cement in Korea and other countries. Non-sintered cement shows various characteristics of its reaction products and hardeners, depending on the kind of alkali activators. Thus, this study manufactures ground granulated blast furnace slag based non-sintered cement binder by using circulating fluidized bed combustion ash, which is a kind of industrial byproduct, as a stimulant, and investigated its hardening characteristics and hydration, depending on the rate of circulating fluidized bed combustion ash. Besides, this study investigated its insulation property according to the weight lightening of non-sintered cement. As a result, ettringite and C-S-H were mainly formed in the hydration, and it was possible to manufacture a non-sintered cement hardener over 50 MPa. Lastly, it was possible to manufacture a non-sintered cement hardener in a thermal conductivity level of $0.127W/m{\cdot}K$ when the compressive strength was 10 MPa for weight lightening.

최근 친환경 구조물의 관심 증가와 함께 비소성 시멘트는 국내외적으로 활발히 연구되고 있다. 비소성 시멘트의 경우 알카리 자극제의 종류에 따라 반응생성물 및 경화체의 특성이 다양하게 나타난다. 본 연구에서는 산업 부산물인 순환유동층 보일러 애시를 자극제로 사용하여 고로슬래그 미분말 기반 비소성 시멘트를 제조하여, 순환유동층 보일러 애시의 함량에 따른 경화 특성 및 수화물을 검토하였다. 또한 비소성 시멘트 경량화에 따른 단열특성을 고찰하였다. 그 결과 수화물인 C-S-H와 ettringite가 주로 형성되었으며, 50 MPa 이상의 비소성 시멘트 경화체의 제조가 가능하였다. 또한 경량화 시 압축강도는 10 MPa로, 이때에 열전도율은 $0.127W/m{\cdot}K$ 수준이었다.

Keywords

References

  1. Palomo, A., Grutzeck, M. W. and Blanco, M. T., "Alkaliactivated Fly Ashes : A Cement for the Future", Cement and Concrete Research, Vol.29, 1999, pp. 1323-1329. https://doi.org/10.1016/S0008-8846(98)00243-9
  2. Somma, K., Jaturapitakkul, C., Kajitvichyanukul, P., and Chindaprasirt, P., "NaOH-activated Ground Fly Ash Geopolymer Cured at Ambient Temperature", Fuel, Vol.90, 2011, pp. 2118-2124. https://doi.org/10.1016/j.fuel.2011.01.018
  3. Jo, G. T., Lee, T. K., Park, M. H., and Hwang, Y., "Compressive Strength of Geopolymers while Varying the Raw Materials", Journal of the Korean Ceramic Society, Vol.49, No.6, 2012, pp. 575-580. https://doi.org/10.4191/kcers.2012.49.6.575
  4. Kim, M. S., Jun, Y. B., Lee, C. H., and Oh, J. E., "Use of CaO as an Activator for Producing a Price-competitve Non- Cement Structural Binder using Ground Granulated Blast Furnace Slag", Cement and Concrete Research, Vol.54, 2013, pp. 208-214. https://doi.org/10.1016/j.cemconres.2013.09.011
  5. Yang, K. H. and Song, J. G., "The Properties and Applications of Alkali-Activated Concrete with No Cement", Magazine of the Korea Concrete Institute, Vol.19, No.2, 2007, pp. 42-48. https://doi.org/10.22636/MKCI.2007.19.2.42
  6. Fu, X., Li, Q., Zhai, J., Sheng, G., and Li, F., "The Physical-Chemical Characterization of Mechanically-treated CFBC Fly Ash", Cement & Concrete Composites, Vol.30, 2008, pp. 220-226. https://doi.org/10.1016/j.cemconcomp.2007.08.006
  7. Jeon, C. S. and Song, T. W. "Effect of Curing Temperature on Geopolymeric Polycondensation of Blast Furnace Slag", Journal of the Korean Ceramic Society, Vol.48, No.6, 2011, pp. 610-616. https://doi.org/10.4191/kcers.2011.48.6.610
  8. Yang, K. H., Cho, A. R., Song, J. K., and Nam, S. H., "Hydration Products and Strenth Development of Calcium Hydroxide-based Alkali-activated Slag Mortars", Construction and Building Materials, Vol.29, 2012, pp. 410-419. https://doi.org/10.1016/j.conbuildmat.2011.10.063
  9. Ben Haha, M., Le Saout, G., Winnefeld, F., and Lothenbach, B., "Influence of Activator Type on Hydration Kinetics, Hydrate Assemblage and Microstructural Development of alkali Activated Blast-furnace Slags", Cement and Concrete Research, Vol.41, 2011, pp. 301-310. https://doi.org/10.1016/j.cemconres.2010.11.016
  10. Wang, S. D. and Scrivener, Laren L., "Hydration Products of Alkali Activated Slag Cement", Cement and Concrete Research, Vol.25, 1995, pp. 561-571. Testing and Material, ASCE, 2002, 4pp. https://doi.org/10.1016/0008-8846(95)00045-E