DOI QR코드

DOI QR Code

축 안정화 디자인이 상이한 토릭소프트콘택트렌즈의 회전 양상 차이

Difference in Rotation Pattern of Toric Soft Contact Lenses with Different Axis Stabilization Design

  • 박소현 (서울과학기술대학교 안경광학과) ;
  • 김동연 (서울과학기술대학교 안경광학과) ;
  • 최주희 (서울과학기술대학교 안경광학과) ;
  • 변현영 (서울과학기술대학교 안경광학과) ;
  • 김소라 (서울과학기술대학교 안경광학과) ;
  • 박미정 (서울과학기술대학교 안경광학과)
  • Park, So Hyun (Dept. of Optometry, Seoul National University of Science and Technology) ;
  • Kim, Dong Yeon (Dept. of Optometry, Seoul National University of Science and Technology) ;
  • Choi, Joo Hee (Dept. of Optometry, Seoul National University of Science and Technology) ;
  • Byun, Hyun Young (Dept. of Optometry, Seoul National University of Science and Technology) ;
  • Kim, So Ra (Dept. of Optometry, Seoul National University of Science and Technology) ;
  • Park, Mijung (Dept. of Optometry, Seoul National University of Science and Technology)
  • 투고 : 2015.04.27
  • 심사 : 2015.05.23
  • 발행 : 2015.06.30

초록

목적: 본 연구에서는 축 안정화 디자인이 상이한 두 토릭소프트콘택트렌즈의 회전축과 회전량이 자세와 응시방향에 따라 달라지는 지를 알아보았다. 방법: 20~30대 52안을 대상으로, Lo-Torque$^{TM}$디자인 및 ASD 디자인(accelerated stabilized design) 토릭소프트콘택트렌즈를 피팅한 후 정면을 포함한 5가지 응시방향과 누운 자세에서의 회전량을 측정하였다. 결과: 정자세에서 정면 및 수직방향 응시 시 Lo-Torque$^{TM}$ 디자인 렌즈는 코쪽, ASD 디자인 렌즈는 귀쪽으로 회전하는 비율이 높은 것으로 나타났다. 수평방향 응시시에는 두 렌즈 모두 응시방향과 반대로 축회전이 일어났다. 위쪽을 응시할 때의 회전량이 가장 작았으며 코쪽을 응시할 때의 회전량이 가장 많았다. $5^{\circ}$ 이내의 회전량을 보인 경우는 정면과 수직방향을 응시할 때의 Lo-Torque$^{TM}$ 디자인 렌즈에서 더 많았으며, 수평방향 응시 시에는 ASD 디자인 렌즈에서 더 많았다. 또한, 누운 직후에는 Lo-Torque$^{TM}$ 디자인 렌즈의 회전량이 더 적었으나 1분 후에는 ASD 디자인 렌즈의 회전량이 더 적었다. 결론: 본 연구에서는 토릭소프트콘택트렌즈 착용 후 응시방향 및 자세에 의해 유발되는 축회전이 축 안정화 디자인에 따라 달라짐을 확인하였다.

Purpose: It was investigated whether two different stabilization designs of toric contact lenses changed the rotational axis and degree of toric lenses according to body posture and gaze direction in the present study. Methods: Toric soft contact lenses with Lo-Torque$^{TM}$ design and ASD design (accelerated stabilized design) were fitted on 52 eyes aged in 20s-30s. Then, rotational degree was measured at the five gaze directions including front gaze and the lying position. Results: When gazing the front and vertical directions in the upright posture, lens was much rotated to nasal side for the Lo-Torque$^{TM}$ design and temporal side for the ASD design. When gazing horizontal direction, both design lenses were rotated against to the gaze direction. Rotation degree was the smallest at superior direction gaze and the largest at nasal gaze. In case of the rotation degree less than $5^{\circ}$, Lo-Torque$^{TM}$ design was more frequent when gazing front and vertical directions, and ASD design was more frequent when gazing horizontal direction. In addition, the lens with Lo-Torque$^{TM}$ design was lesser rotation degree than with ASD design immediately after lying. On the other hand, the lens with ASD design was lesser rotation degree than with Lo-Torque$^{TM}$ design 1 minute later after lying. Conclusions: This study confirmed that axis rotation of the lens induced by gaze direction and posture was different according to axis stabilization design during wearing toric soft contact lens.

키워드

참고문헌

  1. Jackson JM. Back to basics: Soft lenses for astigmatism. Contact Lens Spectrum. 2012;27:28-32.
  2. Morgan PB, Efron N, Woods CA. An international survey of toric contact lens prescribing. Eye Contact Lens. 2013;39(2):132-137. https://doi.org/10.1097/ICL.0b013e318268612c
  3. Davis RL, Eiden SB. Problem solving soft toric contact lenses. Contact Lens Spectrum. 2013;28:28-32.
  4. Kim SR, Hahn SW, Song JS, Park M. The effects of corneal eccentricity and shape on toric soft lens rotation by change of postures. J Korean Ophthalmic Opt Soc. 2013;18(4):449-456. https://doi.org/10.14479/jkoos.2013.18.4.449
  5. Zikos GA, Kang SS, Ciuffreda KJ, Selenow A, Ali S, Spencer LW et al. Rotation stability of toric soft contact lenses during natural viewing conditions. Optom Vis Sci. 2007;84(11):1039-1045. https://doi.org/10.1097/OPX.0b013e318159aa3e
  6. Young G, McIlraith R, Hunt C. Clinical evaluation of factors affecting soft toric lens orientation. Optom Vis Sci. 2009;86(11):1259-1266. https://doi.org/10.1097/OPX.0b013e3181bc63b4
  7. McIlraith R, Young G, Hunt C. Toric lens orientation and visual acuity in non-standard conditions. Cont Lens Anterior Eye. 2010;33:23-26. https://doi.org/10.1016/j.clae.2009.08.003
  8. Resnick S. Toric contact lenses fitting: The changing dynamics of soft CL technology. Optometry today. 2006;46:39-40.
  9. Kim JH, Kang SA. A study on the relationship between the off-axis cylinder and corrected vision of astigmatism. J Korean Ophthalmic Opt Soc. 2007;12(3):83-87.
  10. Tan J, Papas E, Carnt N, Jalbert, Skotnitsky C, Shiobara M et al. Performance standards for toric soft contact lenses. Optom Vis Sci. 2007;84(5):422-428. https://doi.org/10.1097/OPX.0b013e318059063b
  11. Myers RI, Castellano C, Becherer PD, Walter DE. Lens rotation and spherocylindrical over-refraction as predictors for soft toric lens evaluation. Optom Vis Sci. 1989;66(9):573-578. https://doi.org/10.1097/00006324-198909000-00002
  12. Edrington TB. A literature review: the impact of rotational stabilization methods on toric soft contact lens performance. Cont Lens Anterior Eye. 2011;34(3):104-110. https://doi.org/10.1016/j.clae.2011.02.001
  13. Park HM, Kim SR, Park M. A correlation between axisrotation and corneal astigmatism in toric soft contact lens fitting. J Korean Ophthalmic Opt Soc. 2014;19(2):189-198. https://doi.org/10.14479/jkoos.2014.19.2.189
  14. Park HM, Park KH, Kim SR, Park M. A Correlation between axis-rotation and corneal eccentricity in toric soft contact lens fitting in with-the-rule astigmatism. J Korean Ophthalmic Opt Soc. 2014;19(3):305-313. https://doi.org/10.14479/jkoos.2014.19.3.305
  15. Young G, Hunt C, Covey M. Clinical evaluation of factors influencing toric soft contact lens fit. Optom Vis Sci. 2002;79(1):11-19. https://doi.org/10.1097/00006324-200201000-00008