DOI QR코드

DOI QR Code

Establishing Effective Screening Methodology for Novel Herbicide Substances from Metagenome

신규 제초활성 물질 발굴을 위한 메타게놈 스크리닝 방법 연구

  • Lee, Boyoung (Eco-friendly and New materials Research Center, Korea Research Institute of Chemical Technology) ;
  • Choi, Ji Eun (Eco-friendly and New materials Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Young Sook (Eco-friendly and New materials Research Center, Korea Research Institute of Chemical Technology) ;
  • Song, Jae Kwang (Eco-friendly and New materials Research Center, Korea Research Institute of Chemical Technology) ;
  • Ko, Young Kwan (Eco-friendly and New materials Research Center, Korea Research Institute of Chemical Technology) ;
  • Choi, Jung Sup (Eco-friendly and New materials Research Center, Korea Research Institute of Chemical Technology)
  • 이보영 (한국화학연구원 친환경신물질연구센터) ;
  • 최지은 (한국화학연구원 친환경신물질연구센터) ;
  • 김영숙 (한국화학연구원 친환경신물질연구센터) ;
  • 송재광 (한국화학연구원 친환경신물질연구센터) ;
  • 고영관 (한국화학연구원 친환경신물질연구센터) ;
  • 최정섭 (한국화학연구원 친환경신물질연구센터)
  • Received : 2015.06.05
  • Accepted : 2015.06.15
  • Published : 2015.06.30

Abstract

Metagenomics is a powerful tool to isolate novel biocatalyst and biomolecules directly from the environmental DNA libraries. Since the metagenomics approach bypasses cultivation of microorganisms, un-cultured microorganisms that are majority of exists can be the richest reservoir for natural products discovery. To discover novel herbicidal substances from soil metagenome, we established three easy, simple and effective high throughput screening methods such as cucumber cotyledon leaf disc assay, microalgae assay and seed germination assay. Employing the methods, we isolated two active single clones (9-G1 and 9-G12) expressing herbicidal activity which whitened leaf discs, inhibited growth of microalgae and inhibited root growth of germinated Arabidopsis seeds. Spraying butanol fraction of the isolated active clones' culture broth led to growth retardation or desiccation of Digitalia sanguinalis (L) Scop. in vivo. These results represent that the screening methods established in this study are useful to screen herbicidal substances from metagenome libraries. Further identifying molecular structure of the herbicidal active substances and analyzing gene clusters encoding synthesis systems for the active substances are in progress.

메타게놈(metagenome)은 연구실에서 배양이 불가능한 미생물을 포함한 자연계에 존재하는 미생물의 유전자를 직접 연구하는 학문분야이다. 지구상 거의 모든 자연, 인공 환경에서 살고 있는 미생물 DNA를 분리 정제하는 것이 가능하며, 재조합 DNA 기술 등을 이용하여 배양 가능한 숙주미생물에 메타지놈을 클로닝함으로서 메타지놈 라이브러리를 제작할 수 있다. 최근 메타게노믹스를 통하여 자연계에 존재하고 있는 대다수의 미생물들이 실험실에서 배양되지 않았던 이유를 구명할 수 있게 되었고, 그들이 가지고 있는 생태학적인 의미와 역할에 대한 이해와 더불어 점차 그 응용 분야와 범위도 확대되고 있다. 이와 같은 메타게놈의 응용 분야 확대의 한 방안으로 본 연구에서는 새로운 제초활성 물질 및 제초활성 물질 생산에 필요한 유전자를 확보하기 위해 메타게놈 라이브러리를 대상으로 오이 떡잎절편 검정, 미세조류 생장저해 검정, 종자발아 저해 검정의 HTS (high throughput screening) 시스템을 구축하였고, 구축된 시스템으로부터 선발된 최종 단일 클론인 9-G1과 9-G12의 바랭이에 대한 in vivo assay를 통해 본 연구에서 개발한 HTS 시스템의 유효성을 확인 하였다. 후속연구로서 활성단일클론이 만들어내는 제초활성물질의 동정 및 제초활성물질을 합성하는 유전자군에 대한 연구를 수행 중에 있다.

Keywords

References

  1. Allen, M.B. 1952. The cultivation of Myxophyceae. Arch. Microbiol. 17:34-53.
  2. Bayer, E., Gugel, K., Hägele, K., Hagenmaier, H., Jessipow, S., et al. 2004. Stoffwechselprodukte von mikroorganismen. 98. Mitteilung. Phosphinothricin und Phosphinothricyl-Alanyl- Alanin. Helv. Chim. Acta. 55:224-239.
  3. Bender, C.L., Alarcon-Chaidez, F. and Gross, D.C. 1999. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol. Mol. Biol. Rev. 63:266-92.
  4. Courtois, S., Cappellano, C.M., Ball, M., Francou, F.X., Normand, P., et al. 2003. Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products. Appl. Environ. Microbiol. 69:49-55. https://doi.org/10.1128/AEM.69.1.49-55.2003
  5. Daniel, R. 2004. The soil metagenome--a rich resource for the discovery of novel natural products. Curr. Opin. Biotechnol. 15:199-204. https://doi.org/10.1016/j.copbio.2004.04.005
  6. Duke, S., Abbas, H., Amagasa, T. and Tanaka, T. 1996. Phytotoxins of microbial origin with potential for use as herbicides. Critical Reports on Applied Chemistry 35:82-112.
  7. Fairchild, J.F., Ruessler, D.S. and Carlson, A.R. 1998. Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachlor, and metolachlor. Environ. Toxicol. Chem. 17:1830-1834. https://doi.org/10.1002/etc.5620170924
  8. Gillespie, D.E., Brady, S.F., Bettermann, A.D., Cianciotto, N.P., Liles, M.R., et al. 2002. Isolation of antibiotics turbomycin a and B from a metagenomic library of soil microbial DNA. Appl. Environ. Microbiol. 68:4301-4306. https://doi.org/10.1128/AEM.68.9.4301-4306.2002
  9. Hahn, D.R., Graupner, P.R., Chapin, E., Gray, J., Heim, D., et al. 2009. Albucidin: a novel bleaching herbicide from streptomyces albus subsp. chlorinus NRRL B-24108. J. Antibiot. 62:191-194. https://doi.org/10.1038/ja.2009.11
  10. Handelsman, J., Rondon, M.R., Brady, S.F., Clardy, J. and Goodman, R.M. 1998. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chemistry & biology. 5:R245-R249. https://doi.org/10.1016/S1074-5521(98)90108-9
  11. Henne, A., Schmitz, R.A., Bomeke, M., Gottschalk, G. and Daniel, R. 2000. Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on escherichia coli. Appl. Environ. Microbiol. 66:3113-3116. https://doi.org/10.1128/AEM.66.7.3113-3116.2000
  12. Hoagland, R.E. 1990. Microbes and microbial products as herbicides. An overview. ACS Symposium Series1990. 439:2-52.
  13. Hoerlein, G. 1994. Glufosinate (phosphinothricin), a natural amino acid with unexpected herbicidal properties. Rev. Environ. Contam. Toxicol. 138:73-146.
  14. Iqbal, H.A., Feng, Z. and Brady, S.F. 2012. Biocatalysts and small molecule products from metagenomic studies. Curr. Opin. Chem. Biol. 16:109-16. https://doi.org/10.1016/j.cbpa.2012.02.015
  15. Kao-Kniffin, J., Carver, S.M. and DiTommaso, A. 2013. Advancing weed management strategies using metagenomic techniques. Weed Sci. 61:171-184. https://doi.org/10.1614/WS-D-12-00114.1
  16. Lammle, K., Zipper, H., Breuer, M., Hauer, B., Buta, C., et al. 2007. Identification of novel enzymes with different hydrolytic activities by metagenome expression cloning. J. biotechnol. 127:575-592. https://doi.org/10.1016/j.jbiotec.2006.07.036
  17. Langer, M., Gabor, E.M., Liebeton, K., Meurer, G., Niehaus, F., et al. 2006. Metagenomics: An inexhaustible access to nature's diversity. Biotechnol. J. 1:815-821. https://doi.org/10.1002/biot.200600111
  18. Lydon, J., Duke, S.O. and Singh, B. 1999. Inhibitors of glutamine biosynthesis, Marcel Dekker: New York, NY, USA.
  19. Ma, J., Xu, L., Wang, S., Zheng, R., Jin, S., et al. 2002. Toxicity of 40 herbicides to the green alga chlorella vulgaris. Ecotoxicol. Environ. Saf. 51:128-132. https://doi.org/10.1006/eesa.2001.2113
  20. Olmstead, J.W., Lang, G.A. and Grove, G.G. 2000. A leaf disk assay for screening sweet cherry genotypes for susceptibility to powdery mildew. HortSci. 35:274-277.
  21. Pavlic, Z., Stjepanovic, B., Horvatic, J., Persic, V., Puntaric, D., et al. 2006. Comparative sensitivity of green algae to herbicides using Erlenmeyer flask and microplate growth-inhibition assays. Bull. Environ. Contam. Toxicol. 76:883-890. https://doi.org/10.1007/s00128-006-1001-3
  22. Podola, B. and Melkonian, M. 2005. Selective real-time herbicide monitoring by an array chip biosensor employing diverse microalgae. Journal of Applied Phycol. 17:261-271. https://doi.org/10.1007/s10811-005-4945-5
  23. Simon, C. and Daniel, R. 2011. Metagenomic analyses: past and future trends. Appl. Environ. Microbiol. 77:1153-1161. https://doi.org/10.1128/AEM.02345-10
  24. Tworkoski, T. 2002. Herbicide effects of essential oils. Weed Sic. 50(4):425-431. https://doi.org/10.1614/0043-1745(2002)050[0425:HEOEO]2.0.CO;2
  25. Vedrine, C., Leclerc, J.C., Durrieu, C. and Tran-Minh, C. 2003. Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides. Biosens Bioelectron. 18:457-463. https://doi.org/10.1016/S0956-5663(02)00157-4