DOI QR코드

DOI QR Code

An Experimental Study on the Effect of Low Fin Tube Geometry on Pool Boiling of a LiBr Solution

낮은 핀관의 형상이 LiBr 수용액의 풀 비등에 미치는 영향에 대한 실험적 연구

  • Kim, Nae-Hyun (Div. of Mechanical System Engineering, Incheon Nat'l Univ.)
  • 김내현 (인천대학교 기계시스템공학부)
  • Received : 2015.03.04
  • Accepted : 2015.05.03
  • Published : 2015.07.01

Abstract

Pool boiling heat transfer coefficients of a LiBr solution were obtained for seven low fin tubes having different fin pitch and fin height. The test range covered saturation pressure from 7.38kPa to 101.3kPa, heat flux from $20kW/m^2$ to $40 kW/m^2$ and LiBr concentration from 0% to 50%. The optimum fin geometry for the present experimental range turned out to be 26 fpi with 0.18 mm fin height.The advantage of added heat transfer area and the disadvantage of slower bubble growth and departure appear to have yielded an optimum fin pitch. The heat transfer coefficient decreased as saturation pressure decreased and Libr concentration increased. The reason may be attributed to the low saturation pressure, which increased the bubble departure diameter and decreased the bubble departure frequency. As the LiBr concenreation increased, the saturation temperature increased and the mass diffusion rate decreased, which resulted in a reduced heat transfer coefficient. The heat transfer coefficients of the low fin tube were greater than those of the smooth tube. Correlations were developed based on the present data.

본 연구에서는 핀 핏치와 핀 높이가 다른 7종류의 낮은 핀관에 대하여 LiBr 농도 0%.~50%, 열유속 $20kW/m^2{\sim}40kW/m^2$, 포화압력 7.38kPa~101.3kPa에서 풀 비등 실험을 수행하였다. 실험 범위에서 최적 낮은 핀관 형상은 핀 핏치 26fpi, 핀 높이 1.8mm로 나타났다. 핀 핏치가 너무 넓으면 전열 면적이 감소하고 핀 핏치가 너무 좁으면 기포의 성장 및 이탈이 원활하지 못하게 되어 최적 핀 핏치가 존재한다. 포화압력이 낮아질수록, LiBr 농도가 증가할수록 열전달계수는 감소하였다. 이는 포화압력이 낮아질수록 기포의 이탈직경은 증가하고 이탈 빈도는 감소하기 때문이다. 또한 LiBr 농도가 증가하면 포화온도는 증가하고 물질확산율은 감소하는데 이에 따라 기포의 성장속도가 감소하고 따라서 열전달계수가 감소하게 된다. 낮은 핀관의 열전달계수는 모든 포화압력과 농도에서 평활관의 열전달계수보다 크게 나타났다. 본 실험자료를 기반으로 상관식을 제시하였다.

Keywords

References

  1. Yoon, J. I., Oh, H. K. and Kashiwagi, T., 1995, "Characteristics of Heat and Mass Transfer for a , Falling Film Type Absorber with Insert Spring Tubes," Trans. Korean Soc. Mech. Eng. B, Vol. 19, No. 6, pp. 1501-1509.
  2. Kawamata, O., Otani, T., Ishitulia, N., and Aliyanchi, T., 1985, "Development of High Performance Heat Transfer Tubes for Absorber of Absorption Refrigerator," Hitachi Corporation, Vol. 8, pp. 57-62.
  3. Furukawa, M., Sasaki, N., Kaneko, T. and Nosetani, T., 1993, "Enhanced Heat Transfer Tubes for Absorber of Absorption Chiller/Heater," Trans. of the JAR, Vol. 10, No. 2, pp. 219-226.
  4. Yoon, J. I., Kwon, O. K. and Moon, C. G., 1999, "Experimental Investigation of Heat and Mass Transfer on Absorber with Several Enhanced Tubes," KSME International Journal, Vol. 13, No. 9, pp. 640-646. https://doi.org/10.1007/BF03184574
  5. Lee, K. T., Lee, H. S., Moon, C. G., Kang, K. C. and Yoon, J. I., 2004, "Experimental Study on Performance Characteristics of Absorber with Variations of Tube Diameters," Journal of the Korean Society for Power System Engineering, Vol. 8, pp. 328-333.
  6. Kwon, O. K., Cha, D. A., Yun, J. H. and Kim, H. S., 2009, "A Study on the Heat Transfer Performance of Evaporator Heat Transfer Tube for Absorption Chiller," Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 21, No. 4, pp. 215-221.
  7. Charters, W. W. S., Megler, V. R., Chen W. D. and Wang, Y. F., 1982, "Atmospheric and Sub-Atmospheric Boiling of $H_2O$ and $LiBr/H_2O$ Solutions," International Journal of Refrigeration, Vol. 5, No. 2, pp. 107-114. https://doi.org/10.1016/0140-7007(82)90085-8
  8. Lee, J. H., Kim, B. L., Lee, K. P. and Park, C. W., 2013, "A Study on Performance Characteristics of Heating Tubes used in the Falling Film Generator of a Hot Water Driven Absorption Chiller," Proceedings of the KSME 2013 Annual Meeting, pp. 873-876.
  9. Varma, H. K., Mehrotra, R. K. and Agrawal, K. N., 1994, "Heat Transfer During Pool Boiling of LiBr-Water Solutions at Subatmospheric Pressures," International Communications in Heat Mass Transfer, Vol. 21, No. 4, pp. 539-548. https://doi.org/10.1016/0735-1933(94)90053-1
  10. Yoon, J. I., Lee, Y. H. and Oh, H. K., 1994, "Experimental Study of Surfactant Effect on Generator Pool Boiling Heat Transfer," Trans. Korean Soc. Mech. Eng. B, Vol. 14, pp. 143-146.
  11. Stoecker, W. F. and Jones, J. W., 1982, Refrigeration and Air-Conditioning, 2nd ed., McGraw-Hill Pub.
  12. Wilson, E. E., 1915, "A Basis of Rational Design of Heat Transfer Apparatus," Trans. ASME, Vol. 37, pp. 47-70.
  13. Kline, S. J. and McClintock, F. A., 1953, "The Description of Uncertainties in Single Sample Experiments," Mechanical Engineering, Vol. 75, pp. 3-9.
  14. Rohsenow, W. M., 1952, "A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids," Trans. ASME, Vol. 74, pp. 969-975.
  15. Stephan, K. and Abdelsalam, M., 1980, "Heat Transfer Correlations for Natural Convection Boiling," Int. J. Heat Mass Transfer, Vol. 23, pp. 73-87. https://doi.org/10.1016/0017-9310(80)90140-4
  16. Gorenflo, D., 1993, "Pool Boiling" in VDI Heat Atlas(English Version), VDI-Verlag Dusseldorf, Germany.
  17. Gnielinski, V., 1976, "New Equation for Heat and Mass Transfer in Turbulent Pipe and Channel Flow," International Journal of Chemical Engineering, Vol. 1, pp. 359-368.
  18. Collier, J. G. and Thome, J. R., 1996, Convective Boiling and Condensation, Oxford University Press.
  19. EES32, 2013, F-Chart Software