DOI QR코드

DOI QR Code

An Earthwork Districting Model for Large Construction Projects

단지공사의 토공구획 계획 모델

  • 백현기 (성엔지니어링 토목설계사업부) ;
  • 강상혁 (인천대학교 도시환경공학부) ;
  • 서종원 (한양대학교 건설환경공학과)
  • Received : 2015.03.02
  • Accepted : 2015.03.24
  • Published : 2015.06.01

Abstract

Earthwork in a large construction project such as a land development generally costs 20-30% of the total cost. The earthmoving process, comprising of four repetitive tasks: loading, hauling, unloading, returning, is quite simple and it does not need delicate or advanced techniques. Therefore, earthmoving earthwork planning can heavily affect the cost and time., and Even a slight deviation from the plan can increase or decrease the cost and time. This study presents a planning model that minimizes average haul distance in a large complex construction project. Based on earthwork planning, practitioners' heuristics, a districting algorithm and Simulated Annealing algorithm were employed to build the model. Districting algorithm plays a role that divides in dividing an earthmoving area into several sections. Simulated annealing provides a function that decides whether a new generated solution is confident. Finally, the proposed model was applied to a real earthmoving project of a large land development. It was found that the model showed approximately 14% improvement in average hauling distance compared to the actual design plan.

단지 조성을 위한 토공사는 대상 부지의 지형고를 계획고와 맞추기 위한 대규모 토량이동으로 이루어지는 공사로 전체 공사비에 20~30%를 차지하는 중요한 공정이다. 한편 토공사는 주로 적재-운반-하차-복귀의 단순 작업사이클로 구성되어 있어 계획의 품질은 공기와 비용에 매우 큰 영향을 끼친다. 본 연구에서는 대규모 단지 조성 공사에서 토공 운반거리를 최소화할 수 있는 토량구획 모델을 제시하였다. 본 모델은 구획 알고리즘과 simulated Annealing 알고리즘에 기반하고 있으며, 이러한 알고리즘은 국부해에 빠질 수 있는 현행 토공구획 방법을 개선하기 위하여 도입되었다. 제시된 모델의 적용성을 평가하기 위하여 실제 단지공사 토량이동도를 대상으로 시뮬레이션을 실시한 결과 약 14%의 개선효과를 확인하였다.

Keywords

References

  1. Easa, S. M. (1988). "Improved method for locating centroid of earthwork." Journal of Surveying Engineering, ASCE, Vol. 114, No. 1, pp. 13-25. https://doi.org/10.1061/(ASCE)0733-9453(1988)114:1(13)
  2. Easa, S. M. (1992). "Estimating earchwork volumes of curved roadways: Mathematical Model." Journal of Transportation Engineering, ASCE, Vol. 118, No. 6, pp. 834-849. https://doi.org/10.1061/(ASCE)0733-947X(1992)118:6(834)
  3. Easa, S. M. (1993). "Smooth boundary approximation for directly computing irregular area." Journal of Surveying Engineering, ASCE, Vol. 119, No. 3, pp. 86-101. https://doi.org/10.1061/(ASCE)0733-9453(1993)119:3(86)
  4. Easa, S. M. (1998). "Smooth surface approximation for computing pit excavation volume." Journal of Surveying Engineering, ASCE, Vol. 124, No. 3, pp. 125-133. https://doi.org/10.1061/(ASCE)0733-9453(1998)124:3(125)
  5. Epps, J. W. and Corey, M. W. (1990). "Cut and fill calculation by modified average-end-area method." Journal of Transportation Engineering, ASCE, Vol. 116, No. 5, pp. 683-689. https://doi.org/10.1061/(ASCE)0733-947X(1990)116:5(683)
  6. Ji, Y., Borrmann, A. and Rank, E. (2010). "Mathematical modeling of earthwork optimization problems." Proceedings of the fifth International Conference on Computing in Civil and Building Engineering 2010 (ICCCBE 2010).
  7. Kim, S. K. and Russell, J. S. (2003a). "Framework for an intelligent earthwork system: Part I. System Architecture." Automation in Construction, Vol. 12, No. 1, pp. 1-13. https://doi.org/10.1016/S0926-5805(02)00034-1
  8. Kim, S. K. and Russell, J. S. (2003b). "Framework for an intelligent earthwork system: Part II. Task Identification/Scheduling and Resource Allocation Methodology." Automation in Construction, Vol. 12, No. 1, pp. 15-27. https://doi.org/10.1016/S0926-5805(02)00033-X
  9. Lee, C. K., Kim, S. K. and Sung, Y. J. (2003). "A study on 2D-based earthwork planning methods." Journal of the Korean Society of Civil Engineers, Vol. 23, No. 3D, pp. 349-357.
  10. Marzouk, M. and Moselhi, O. (2004). "Fuzzy clustering model for estimating haulers' travel time." Journal of Construction Engineering and Management, ASCE, Vol. 130 No. 6, pp. 878-886. https://doi.org/10.1061/(ASCE)0733-9364(2004)130:6(878)
  11. Moselhi, O. and Alshibani, A. (2009). "Optimization of earthmoving operations in heavy civil engineering projects." Journal of Construction Engineering and Management, ASCE, Vol. 135, No. 10, pp. 948-954. https://doi.org/10.1061/(ASCE)0733-9364(2009)135:10(948)
  12. Ricca, F. and Simeone, B. (2008). "Local search algorithm for political districting." European Journal of Operational Research, ELSEVIER, Vol. 189, No. 3, pp. 1409-1426. https://doi.org/10.1016/j.ejor.2006.08.065
  13. Smith, S. (1999). "Earthmoving productivity estimation using linear regression techniques." Journal of Construction Engineering and Management, ASCE, Vol. 125, No. 3, pp. 131-141.
  14. Son, J. H., Mattila, K. G. and Myers, D. S. (2005). "Determination of haul distance and direction in mass excavation." Journal of Construction Engineering and Management, ASCE, Vol. 131, No. 3, pp. 302-309. https://doi.org/10.1061/(ASCE)0733-9364(2005)131:3(302)
  15. Tam, C. M., Tong, T. L. and Wong, B. L. (2007). "An integrated system for earthmoving planning." Journal of Construction Management and Economics, ASCE, Vol. 25, pp. 1125-1135.
  16. U.S. Department of Commerce (2002). Construction review, U.S. Department of Commerce.
  17. Zhang, H. (2008). "Multi-objectives simulation-optimization for earthworkmoving operations." Automation in Construction, Vol. 18, No. 1, pp. 78-86.

Cited by

  1. Development of a Prototype Model to Establish an Economic Earthwork Plan that Includes the Selection of a Dump Site/Borrow Pit vol.9, pp.12, 2017, https://doi.org/10.3390/su9010074