DOI QR코드

DOI QR Code

Comparison Study on the Various Forms of Scale Parameter for the Nonstationary Gumbel Model

다양한 규모매개변수를 이용한 비정상성 Gumbel 모형의 비교 연구

  • Jang, Hanjin (School of Civil and Environmental Engineering, Yonsei Univ.) ;
  • Kim, Sooyoung (School of Civil and Environmental Engineering, Yonsei Univ.) ;
  • Heo, Jun-Haeng (School of Civil and Environmental Engineering, Yonsei Univ.)
  • 장한진 (연세대학교 대학원 토목환경공학과) ;
  • 김수영 (연세대학교 대학원 토목환경공학과) ;
  • 허준행 (연세대학교 사회환경공학부 토목환경공학과)
  • Received : 2015.02.06
  • Accepted : 2015.03.24
  • Published : 2015.05.31

Abstract

Most nonstationary frequency models are defined as the probability models containing the time-dependent parameters. For frequency analysis of annual maximum rainfall data, the Gumbel distribution is generally recommended in Korea. For the nonstationary Gumbel models, the time-dependent location and scale parameters are defined as linear and exponential relationship, respectively. The exponentially time-varying scale parameter of nonstationary Gumbel model is generally used because the scale parameter should be positive. However, the exponential form of scale parameter occasionally provides overestimated quantiles. In this study, various forms of time-varying scale parameters such as exponential, linear, and logarithmic forms were proposed and compared. The parameters were estimated based on the method of maximum likelihood. To compare the accuracy of each scale parameter, Monte Carlo simulation was performed for various conditions. Additionally, nonstationary frequency analysis was conducted for the sites which have more than 30 years data with a trend in rainfall data. As a result, nonstationary Gumbel model with exponentially time-varying scale parameter generally has the smallest root mean square error comparing with another forms.

비정상성 빈도해석을 위해 개발된 비정상성 확률분포 모형들은 대부분 매개변수에 시간항을 포함하는 형태로 정의된다. 이 중에서도 우리나라에 널리 사용되고 있는 Gumbel 모형에 대해 살펴보면, 비정상성 Gumbel 모형의 위치 및 규모매개변수는 시간에 대해 선형(linear) 및 지수(exponential) 함수의 관계를 보이는 형태로 가정한다. 규모매개변수의 지수함수의 형태는 음(-)의 값이 추정되는 것을 방지하기 위해 제안되어 널리 사용되고 있으나 이로 인해 확률수문량이 과다산정되는 문제가 발생하기도 한다. 본 연구에서는 이러한 문제를 해결하기 위해 비정상성 Gumbel 모형의 규모매개변수의 다양한 형태를 비교하고자 한다. 이를 위해 비정상성 Gumbel 모형의 규모매개변수를 지수함수, 선형, 로그 형태로 가정하여 비교하였다. 각 모형의 매개변수의 추정은 최우도법을 적용하였고 규모매개변수의 형태별 정확도 비교를 위해 모의실험을 수행하였으며, 실제 자료에 대한 적용으로 자료기간 30년 이상을 보유하면서 경향성을 가지는 강우량 자료들을 대상으로 비정상성 빈도해석을 수행하였다. 그 결과, 지수함수 형태를 가정한 규모매개변수를 가지는 비정상성 Gumbel 모형이 가장 작은 오차를 가지는 것으로 분석되었다.

Keywords

References

  1. Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer, London.
  2. Cooley, D. (2013). "Return Periods and Return Levels Under Climate Change." In: Extremes in a Changing Climate, Edited by AghaKouchak, A., Easterling, D., Hsu, K., Schubert, S., and Sorooshian, S., Chapeter 4, Springer, London.
  3. El Adlouni, S., Ouarda, T.B.M.J., Zhang, X., Roy R., and Bobee, B. (2007). "Generalized maximum likelihood estimators for the nonstationary generalized extreme value model." Water Resources Research, Vol. 43, W03410.
  4. Gilroy, K.L., and McCuen, R.H. (2011). "A nonstationary flood frequency analysis method to adjust for future climate change and urbanization." Journal of Hydrology, Vol. 414-415, pp. 40-48.
  5. Goo, Y.J. (2011). Parameter Estimation of GEV Distribution Considering the Non-stationarity, MS Thesis, Yonsei University.
  6. Griffis, V.W., and Stedinger, J.R. (2007). "Incorporating climate changes and variability into Bulletin 17B LP3 model."World Environmental and Water Resources Congress 2007, Tampa, Florida.
  7. Gumbel, E.J. (1958). Statistics of Extremes. Columbia University Press, New York.
  8. He, Y., Bardossy, A., and Brommundt, J. (2006). "Nonstationary flood frequency analysis in southern Germany." Proceedings of the 7th International Conference on HydroScience and Engineering, Philadelphia, USA.
  9. Hundecha, Y., St-Hilaire, A., Ouarda, T.B.M.J., El Adlouni, S., and Gachon, P. (2008). "A nonstationary extreme value analysis for the assessment of changes in extreme annual wind speed over the Gulf of St. Lawrence, Canada." Journal of Applied Meteorology and Climatology, Vol. 47, No. 11, pp. 2745-2759. https://doi.org/10.1175/2008JAMC1665.1
  10. Jain, S., and Lall, U. (2001). "Floods in a changing climate: Does the past represent the future?"Water Resources Research, Vol. 37, No. 11, pp. 3193-3205. https://doi.org/10.1029/2001WR000495
  11. Katz, R.W. (2013). "Statistical Methods for Nonstationary Extremes." In: Extremes in a Changing Climate, Edited by AghaKouchak, A., Easterling, D., Hsu, K., Schubert, S., and Sorooshian, S., Chapeter 2, Springer, London.
  12. Kharin, V.V., and Zwiers, F.W. (2005). "Estimating Extremes in Transient Climate Change Simulations." Journal of Climate, Vol. 18, pp. 1156-1173. https://doi.org/10.1175/JCLI3320.1
  13. Kim, S.Y. (2013). Nonstationary frequency analysis for the gumbel and general extreme value distribution. Ph.D. dissertation, Yonsei University, Seoul, Korea.
  14. Kwon, H.H., Brown, C., and Lall, U. (2008). "Climate informed flood frequency analysis and prediction in Montana using hierarchical Bayesian modeling." Geophysical Research Letter, Vol. 35, L05404.
  15. Kwon, H.H., and Lee, J.J. (2011a). "Seasonal rainfall outlook of Nakdong River basin using nonstationary frequency analysis model and climate information." Journal of Korea Water Resources Association, Vol. 44, No. 5, pp. 339-350. https://doi.org/10.3741/JKWRA.2011.44.5.339
  16. Kwon, H.H., So, B.J., Yoon, P.Y., Kim, T.W., and Hwang, S.H. (2011b). "A comparison of nonstationary frequency analysis using successive average and moving average method." Journal of Korean Society of Hazard Mitigation, Vol. 11, No. 6, pp. 269-280. https://doi.org/10.9798/KOSHAM.2011.11.6.269
  17. Kwon, Y.M., Park, J.W., and Kim, T.W. (2009). "Estimation of design rainfalls considering an increasing trend in rainfall data." Journal of the Korean Society of Civil Engineers, Vol. 29, No. 2B, pp. 131-139.
  18. Leclerc, M., and Ouarda, T.B.M.J. (2007). "Non-stationary regional flood frequency analysis at ungauged sites." Journal of Hydrology, Vol. 343, pp. 254-265. https://doi.org/10.1016/j.jhydrol.2007.06.021
  19. Lee, C.H., Ahn, J.H., and Kim, T.W. (2010a). "Evaluation of probability rainfalls estimated from non-stationary rainfall frequency analysis." Journal of Korean Water Resources Association, Vol. 43, No. 2, pp. 187-199. https://doi.org/10.3741/JKWRA.2010.43.2.187
  20. Lee, J.J., Kwon, H.H., and Kim, T.W. (2010b). "Concept of trend analysis of hydrologic extreme variables and nonstationary frequency analysis." Journal of the Korean Society of Civil Engineers, Vol. 30, No. 4B, pp. 389-397.
  21. Lee, J.J., Kwon, H.H., and Hwang, K.N. (2010c). "Concept of seasonality analysis of hydrologic extreme variables and design rainfall estimation using nonstationary frequency analysis." Journal of Korea Water Resources Association, Vol. 43, No. 8, pp. 733-745. https://doi.org/10.3741/JKWRA.2010.43.8.733
  22. Ministry of Contruction and Transportation. (2000). 1999 Water resources management technique development report, Volume 1: Rainfall quantile atlas of Korea (in Korean). Korea Institute of Construction Technology, Ilsan, Kyonggi-Do.
  23. Natural Environment Research Council (1975). Flood Studies Report, Vol. 1, NERC, London.
  24. Parey, S., Malek, F., Laurent, C., and Dacunha-Castelle, D. (2007). "Trends and climate evolution: Statistical approach for very high temperatures in France." Climate Change, Vol. 81, pp. 331-352. https://doi.org/10.1007/s10584-006-9116-4
  25. Shin, J.Y., Park, T.J., and Kim, T.W. (2013). "Estimation of Future Design Rainfall in Administrative Districts Using Nonstationary GEV Model" Journal of KOSHAM, Vol. 13, No. 3, pp. 147-156.
  26. Shin, H.J., Ahn, H.J., and Heo, J.H. (2014). "A Study on the Changes of Return Period Considering Nonstiationary of Raingfall Data." Journal of Korean Water Resources Association, Vol. 47, No. 5, pp. 447-457. https://doi.org/10.3741/JKWRA.2014.47.5.447

Cited by

  1. Nonstationary Frequency Analysis Using a Hierarchical Bayesian Model vol.15, pp.5, 2015, https://doi.org/10.9798/KOSHAM.2015.15.5.19