DOI QR코드

DOI QR Code

Effects of Autoclaved Morinda officinalis Root Extract on the Suppressive Efficacy of MMP-1 Enzyme

고온고압 처리된 파극천 추출물의 MMP-1 발현 억제 효능 증진

  • 강정욱 (한불화장품(주) 기술연구원) ;
  • 오정영 (한불화장품(주) 기술연구원) ;
  • 배준태 (한불화장품(주) 기술연구원) ;
  • 김진화 (한불화장품(주) 기술연구원) ;
  • 이근수 (한불화장품(주) 기술연구원) ;
  • 표형배 (한불화장품(주) 기술연구원)
  • Received : 2014.12.15
  • Accepted : 2015.03.09
  • Published : 2015.03.31

Abstract

Morinda officinalis (Rubiaceae) is a medicinal herb that has traditionally been used for the treatment of skin inflammation. The present study was to investigate the inhibitory efficacy of matrix metalloproteinases-1 (MMP-1) of the extracts of the root of M. officinalis, which was autoclaved at $132^{\circ}C$ and $1.2kgf/cm^2$ for 15 min using an autoclave. The composition of the extracts were compared with that prepared without autoclaved treatment. Total phenol and flavonoid contents were analyzed for the autoclaved M. officinalis root extract (AME) and M. officinalis root extract (ME). Results showed that the autoclaved AME contained total phenol and flavonoid contents 1.5-fold times more than those from ME. AME showed DPPH and superoxide radical scavenging activities as 79.25% and 94.5%, respectively, at the concentration of $500{\mu}g/mL$. In anti-inflammatory assay, AME inhibited the activity of COX-2 and 5-LOX metabolites. In addition, AME showed higher an inhibition rate in MMP-1 expression than ME in UVA-irradiated human dermal fibroblast (HDF) without any significant cytotoxicity. UVB-induced cytotoxicity and cell death were effectively suppressed by AME. In conclusion, autoclaving the M. officinalis root increased the phenol and flavonoid contents. The extracts of the autoclaved M. officinalis enhanced the antioxidant, anti-inflammatory and anti-MMP-1 effects. Thus, the extracts could be an useful active ingredient in cosmetics.

파극천은 전통적으로 피부염증 치료에 사용되어온 약초이다. 본 연구에서는 파극천 뿌리를 고온($132^{\circ}C$) 및 고압($1.2kgf/cm^2$)에서 15분 동안 처리한 후 추출물을 분리하여 이들의 MMP-1 효소 억제 효능을 확인하였다. 고온고압 처리된 파극천 추출물의 성분변화를 확인한 결과, 고온고압 처리가 파극천 추출물의 페놀 및 플라보노이드 함량을 약 1.5배 이상 증가시키는 것으로 나타났다. DPPH 및 superoxide 라디칼 소거능을 확인해 본 결과 $500{\mu}g/mL$에서 각각 79.25%, 94.5%의 라디칼 소거 효과가 나타났으며, 기존 추출물 대비 농도 의존적으로 활성 증가를 확인하였다. 또한, 항염 효과를 5-LOX 및 COX-2 저해능을 통해 확인한 결과 고온고압 처리된 파극천 추출물에서 약 45% 증가된 저해능이 나타났다. 이에 자외선에 대한 고온고압 처리된 파극천 추출물의 피부 콜라겐 단백질 분해효소 발현 저해 양상도 농도 의존적으로 발현이 억제되었으며 약 16% 정도 저해 효과가 유의적으로 증가되었다. UVB의 세포보호 효과도 고온고압 처리된 파극천 추출물을 함께 처리하였을 때 세포생존율이 증가됨을 확인할 수 있었다. 결론적으로 파극천 추출물에 고온고압 처리를 통해 기존 추출물보다 뛰어난 항산화, 항염 및 MMP-1 발현 억제 효과의 증가를 확인하였으며, 앞으로 기능성 소재로서 화장품에 응용될 수 있을 것으로 사료된다.

Keywords

References

  1. H. Lee, S. Park, B. Choo, J. Chun, A. Lee, and H. Kim, Standardization of Morinda officinalis How, Kor. J. Pharmacogn., 37, 241 (2006).
  2. M. Yoshikawa, S. Yamaguchi, H. Nishisaka, J. Yamahara, and N. Murakami, Chemical constituents of chinese natural medicine, morindae radix, the dried roots of Morinda officinalis How.: Structures of morindolide and morofficinaloside, Chem. Pharm. Bull., 43, 1462 (1995). https://doi.org/10.1248/cpb.43.1462
  3. K. C. Joshi, P. Singh, and R.T. Pardasani, Chemical components of the roots of tectona grandis and gemlina arborea, Planta Medica, 32, 71 (1977). https://doi.org/10.1055/s-0028-1097561
  4. M. K. Kim, C. S. Jeong, Y. K. Shin, K. H. Park, W. J. Lee, E. J. Lee, and K. Y Park, Effects of extraction condition on extraction efficiency of rubiadin in adventitions roots of noni (Morinda citrufolia), Kor. J. Hort. Sci. Technol., 28, 685 (2010).
  5. Q. Liu, S. B. Kim, J. H. Ahn, B. Y. Hwang, S. Y. Kim, and M. K. Lee, Anthraquinones from Morinda officinalis roots enhance adipocyte differentiation in 3T3-L1 cells, Nat. Prod. Res., 26, 1750 (2012). https://doi.org/10.1080/14786419.2011.608676
  6. K. Y. Nam, The comparative understanding between red ginseng, and white ginsengs, processed ginsengs (Panax ginseng C. A. Meyer), J. Ginseng Res., 29, 1 (2005).
  7. S. M. Jeong, S. Y. Kim, D. R. Kim, S. C. Jo, K. C. Nam, D. U. Ahn, and S. Lee, Effect of heat treatment on the antioxidant activity of extracts from citrus peels, J. Agric. Food Chem., 52, 3389 (2004). https://doi.org/10.1021/jf049899k
  8. E. Ragazzi, and G. Veronese, Quantitative analysis of phenolic compounds after thin-layer chromatographic separation, J. Chromatogr., 77, 369 (1973). https://doi.org/10.1016/S0021-9673(00)92204-0
  9. J. L. C. Lamaison, and A. Carnet, Teneurs en principaux flavonoids des fleurs de Crataegeus monogyna Jacq et de Crataegeus laevigata (Poiret D.C) en fonction de la vegetation, Pharm. Acta. Helv., 65, 315 (1990).
  10. M. S. Blois, Antioxidant determinations by the use of a stable free radical, Nature, 181, 1199 (1958). https://doi.org/10.1038/1811199a0
  11. K. Furuno, T. Akasako, and N. Sugihara, The contribution of the pyrogallol moiety to the superoxide radical scavenging activity of flavonoids, Biol. Pharm. Bull., 25, 19 (2002). https://doi.org/10.1248/bpb.25.19
  12. C. M. Reddy, V. B. Bhat, G. Kiranmai, N. M. Reddy, P. Reddanna, and K. M. Madyastha, Selective inhibition of cyclooxygenase-2 by C-phycocyanin, a biliprotein from Spirulina platensis, Biochem. Biophys. Res. Commun., 277, 599 (2000). https://doi.org/10.1006/bbrc.2000.3725
  13. Y. Frum and A. M. Viljoen, In vitro 5-lipoxygenase of south african medicinal plants commonly used topically for skin diseases, Skin Pharmacol. Physiol., 19, 329 (2006). https://doi.org/10.1159/000095253
  14. M. S. Blois, Antioxidant determinations by the use of a stable free radical, Nature, 181, 1199 (1958). https://doi.org/10.1038/1811199a0
  15. V. Dewanto, X. Wu, K. Adom, and R. H. Liu, Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity, J. Agric. Food Chem., 50, 3010 (2002). https://doi.org/10.1021/jf0115589
  16. O. H. Kwon, K. S. Woo, T. M. Kim, D. J. Kim, J. T. Hong, and H. S. Jeong, Physicochemical characteristics of garlic (Allium sativum L.) on the high temperature and pressure treatment, Korean J. Food Sci. Technol., 38, 331 (2006).
  17. J. S. Kim, J. W. Kim, H. S. Kwon, H. W. Lim and H. Y. Lee, Screening of skin whitening activity of codonopsis lanceolata extract by complex steaming process, Kor. J. Medicinal Crop Sci., 21, 54 (2013). https://doi.org/10.7783/KJMCS.2013.21.1.54
  18. A. Kitahara, U. Matsumoto, H. Ueda, and R. Ueoka, A remarkable antioxidation effect of natural phenol derivatives on the autoxidation or ${\gamma}$-irradiated methyl linolate, Chem. Pharm. Bull., 40, 2208 (1992). https://doi.org/10.1248/cpb.40.2208
  19. M. Zhang, H. Chen, J. Li, Y. Pei, and Y. Liang, Antioxidant properties of tartary buckwheat extracts as affected by different thermal processing methods, Food Sci. Technol., 43, 181 (2010).
  20. K. Palu, S. Deng, B. J. West, J. Jensen, and R. A. Sabin, Sunburn (fohia) Healing Effects of Noni: Is it a Mechanism Involving Its Inhibitory effects on MMP, COX-2 and Cat-G Enzymes, J. Applied Pharma. Sci., 2, 40 (2012).
  21. N. W. Kim, E. Y. Joo, and S. L. Kim, Analysis on the components of the fruit of Elaeagnus multiflora Thumb, Korean J. Food Preserv., 10, 534 (2003).
  22. J. H. Chun, S. W. Kang, J. Varani, J. Lin, G. J. Fisher, and J. J. Voorhees, Decreased extracellular signal regulated kinase and increased stress activated MAP kinase activities in aged human skin in vivo, J. Invest. Dermatol., 115, 177 (2000). https://doi.org/10.1046/j.1523-1747.2000.00009.x
  23. H. C. Kim, J. S. Yang, T. S. Chae, K. S. Suh, and S. T. Kim, The effect of all-trans-retinoic acid and ursolic acid on the ultratiolet a radiation induced AP-1 (Fos/Jun) activity in cultured human dermal fibroblasts, Kor. J. Invest. Dermatol., 35, 1136 (1997).
  24. M. Masuda, K.Murata, S. Naruto, A. Uwaya, F. Isami, and H. Matsuda, Matrix metalloproteinase-1 inhibitory activities of Morinda citrifolia seed extract and its constituents in UVA-irradiated human dermal fibroblasts, Biol. Pharm. Bull., 35, 210 (2012). https://doi.org/10.1248/bpb.35.210
  25. Y. W. Rtoo, S. I. Suh, K. C. Mun, B. C. Kim, and K. S. Lee, The effects of the melatonin on ultraviolet- B irradiated cultured dermal fibroblasts, J. Dermatol. Science, 27, 162 (2001). https://doi.org/10.1016/S0923-1811(01)00133-5
  26. Y. S. Jeong, H. K. Jung, and J. Hong, Protective effect of mulberry and lithospermum erythrorhizon extracts on anti-aging against photo damage, J. Korean Soc. Food Sci. Nutr., 42, 1744 (2013). https://doi.org/10.3746/jkfn.2013.42.11.1744