Browse > Article
http://dx.doi.org/10.15230/SCSK.2015.41.1.35

Effects of Autoclaved Morinda officinalis Root Extract on the Suppressive Efficacy of MMP-1 Enzyme  

Kang, Jung Wook (R&D Center, Hanbul cosmetics Co. Ltd.)
Oh, Jung Young (R&D Center, Hanbul cosmetics Co. Ltd.)
Bae, Jun Tae (R&D Center, Hanbul cosmetics Co. Ltd.)
Kim, Jin Hwa (R&D Center, Hanbul cosmetics Co. Ltd.)
Lee, Geun Soo (R&D Center, Hanbul cosmetics Co. Ltd.)
Pyo, Hyeong Bae (R&D Center, Hanbul cosmetics Co. Ltd.)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.41, no.1, 2015 , pp. 35-43 More about this Journal
Abstract
Morinda officinalis (Rubiaceae) is a medicinal herb that has traditionally been used for the treatment of skin inflammation. The present study was to investigate the inhibitory efficacy of matrix metalloproteinases-1 (MMP-1) of the extracts of the root of M. officinalis, which was autoclaved at $132^{\circ}C$ and $1.2kgf/cm^2$ for 15 min using an autoclave. The composition of the extracts were compared with that prepared without autoclaved treatment. Total phenol and flavonoid contents were analyzed for the autoclaved M. officinalis root extract (AME) and M. officinalis root extract (ME). Results showed that the autoclaved AME contained total phenol and flavonoid contents 1.5-fold times more than those from ME. AME showed DPPH and superoxide radical scavenging activities as 79.25% and 94.5%, respectively, at the concentration of $500{\mu}g/mL$. In anti-inflammatory assay, AME inhibited the activity of COX-2 and 5-LOX metabolites. In addition, AME showed higher an inhibition rate in MMP-1 expression than ME in UVA-irradiated human dermal fibroblast (HDF) without any significant cytotoxicity. UVB-induced cytotoxicity and cell death were effectively suppressed by AME. In conclusion, autoclaving the M. officinalis root increased the phenol and flavonoid contents. The extracts of the autoclaved M. officinalis enhanced the antioxidant, anti-inflammatory and anti-MMP-1 effects. Thus, the extracts could be an useful active ingredient in cosmetics.
Keywords
Morinda officinalis; autoclaving; antioxidant; anti-inflammation; anti-aging;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 H. Lee, S. Park, B. Choo, J. Chun, A. Lee, and H. Kim, Standardization of Morinda officinalis How, Kor. J. Pharmacogn., 37, 241 (2006).
2 M. Yoshikawa, S. Yamaguchi, H. Nishisaka, J. Yamahara, and N. Murakami, Chemical constituents of chinese natural medicine, morindae radix, the dried roots of Morinda officinalis How.: Structures of morindolide and morofficinaloside, Chem. Pharm. Bull., 43, 1462 (1995).   DOI
3 K. C. Joshi, P. Singh, and R.T. Pardasani, Chemical components of the roots of tectona grandis and gemlina arborea, Planta Medica, 32, 71 (1977).   DOI
4 M. K. Kim, C. S. Jeong, Y. K. Shin, K. H. Park, W. J. Lee, E. J. Lee, and K. Y Park, Effects of extraction condition on extraction efficiency of rubiadin in adventitions roots of noni (Morinda citrufolia), Kor. J. Hort. Sci. Technol., 28, 685 (2010).
5 Q. Liu, S. B. Kim, J. H. Ahn, B. Y. Hwang, S. Y. Kim, and M. K. Lee, Anthraquinones from Morinda officinalis roots enhance adipocyte differentiation in 3T3-L1 cells, Nat. Prod. Res., 26, 1750 (2012).   DOI
6 K. Y. Nam, The comparative understanding between red ginseng, and white ginsengs, processed ginsengs (Panax ginseng C. A. Meyer), J. Ginseng Res., 29, 1 (2005).
7 S. M. Jeong, S. Y. Kim, D. R. Kim, S. C. Jo, K. C. Nam, D. U. Ahn, and S. Lee, Effect of heat treatment on the antioxidant activity of extracts from citrus peels, J. Agric. Food Chem., 52, 3389 (2004).   DOI
8 E. Ragazzi, and G. Veronese, Quantitative analysis of phenolic compounds after thin-layer chromatographic separation, J. Chromatogr., 77, 369 (1973).   DOI
9 J. L. C. Lamaison, and A. Carnet, Teneurs en principaux flavonoids des fleurs de Crataegeus monogyna Jacq et de Crataegeus laevigata (Poiret D.C) en fonction de la vegetation, Pharm. Acta. Helv., 65, 315 (1990).
10 M. S. Blois, Antioxidant determinations by the use of a stable free radical, Nature, 181, 1199 (1958).   DOI
11 K. Furuno, T. Akasako, and N. Sugihara, The contribution of the pyrogallol moiety to the superoxide radical scavenging activity of flavonoids, Biol. Pharm. Bull., 25, 19 (2002).   DOI
12 C. M. Reddy, V. B. Bhat, G. Kiranmai, N. M. Reddy, P. Reddanna, and K. M. Madyastha, Selective inhibition of cyclooxygenase-2 by C-phycocyanin, a biliprotein from Spirulina platensis, Biochem. Biophys. Res. Commun., 277, 599 (2000).   DOI
13 Y. Frum and A. M. Viljoen, In vitro 5-lipoxygenase of south african medicinal plants commonly used topically for skin diseases, Skin Pharmacol. Physiol., 19, 329 (2006).   DOI
14 M. S. Blois, Antioxidant determinations by the use of a stable free radical, Nature, 181, 1199 (1958).   DOI
15 V. Dewanto, X. Wu, K. Adom, and R. H. Liu, Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity, J. Agric. Food Chem., 50, 3010 (2002).   DOI
16 O. H. Kwon, K. S. Woo, T. M. Kim, D. J. Kim, J. T. Hong, and H. S. Jeong, Physicochemical characteristics of garlic (Allium sativum L.) on the high temperature and pressure treatment, Korean J. Food Sci. Technol., 38, 331 (2006).
17 J. S. Kim, J. W. Kim, H. S. Kwon, H. W. Lim and H. Y. Lee, Screening of skin whitening activity of codonopsis lanceolata extract by complex steaming process, Kor. J. Medicinal Crop Sci., 21, 54 (2013).   DOI   ScienceOn
18 K. Palu, S. Deng, B. J. West, J. Jensen, and R. A. Sabin, Sunburn (fohia) Healing Effects of Noni: Is it a Mechanism Involving Its Inhibitory effects on MMP, COX-2 and Cat-G Enzymes, J. Applied Pharma. Sci., 2, 40 (2012).
19 A. Kitahara, U. Matsumoto, H. Ueda, and R. Ueoka, A remarkable antioxidation effect of natural phenol derivatives on the autoxidation or ${\gamma}$-irradiated methyl linolate, Chem. Pharm. Bull., 40, 2208 (1992).   DOI
20 M. Zhang, H. Chen, J. Li, Y. Pei, and Y. Liang, Antioxidant properties of tartary buckwheat extracts as affected by different thermal processing methods, Food Sci. Technol., 43, 181 (2010).
21 N. W. Kim, E. Y. Joo, and S. L. Kim, Analysis on the components of the fruit of Elaeagnus multiflora Thumb, Korean J. Food Preserv., 10, 534 (2003).
22 J. H. Chun, S. W. Kang, J. Varani, J. Lin, G. J. Fisher, and J. J. Voorhees, Decreased extracellular signal regulated kinase and increased stress activated MAP kinase activities in aged human skin in vivo, J. Invest. Dermatol., 115, 177 (2000).   DOI
23 H. C. Kim, J. S. Yang, T. S. Chae, K. S. Suh, and S. T. Kim, The effect of all-trans-retinoic acid and ursolic acid on the ultratiolet a radiation induced AP-1 (Fos/Jun) activity in cultured human dermal fibroblasts, Kor. J. Invest. Dermatol., 35, 1136 (1997).
24 M. Masuda, K.Murata, S. Naruto, A. Uwaya, F. Isami, and H. Matsuda, Matrix metalloproteinase-1 inhibitory activities of Morinda citrifolia seed extract and its constituents in UVA-irradiated human dermal fibroblasts, Biol. Pharm. Bull., 35, 210 (2012).   DOI   ScienceOn
25 Y. W. Rtoo, S. I. Suh, K. C. Mun, B. C. Kim, and K. S. Lee, The effects of the melatonin on ultraviolet- B irradiated cultured dermal fibroblasts, J. Dermatol. Science, 27, 162 (2001).   DOI
26 Y. S. Jeong, H. K. Jung, and J. Hong, Protective effect of mulberry and lithospermum erythrorhizon extracts on anti-aging against photo damage, J. Korean Soc. Food Sci. Nutr., 42, 1744 (2013).   DOI