DOI QR코드

DOI QR Code

Development of Thermo-Cosmetics Using Photothermal Effect of Gold Nanoparticles

금 나노입자의 광열효과를 이용한 온열화장품 개발

  • Lee, Jae-Yeul (School of Science and Engineering of Chemical Materials) ;
  • Kim, Bo-Mi (School of Science and Engineering of Chemical Materials) ;
  • Park, Se-Ho (School of Science and Engineering of Chemical Materials) ;
  • Choi, Yo-Han (School of Science and Engineering of Chemical Materials) ;
  • Shim, Kyu-Dong (School of Science and Engineering of Chemical Materials) ;
  • Moon, Sung-Bae (School of Science and Engineering of Chemical Materials) ;
  • Jang, Eue-Soon (School of Science and Engineering of Chemical Materials) ;
  • Yang, Seun-Ah (Faculty of Food Science and Public Health, Keimyung University) ;
  • Jhee, Kwang-Hwan (School of Science and Engineering of Chemical Materials)
  • 이재열 (금오공과대학교 화학소재융합학부) ;
  • 김보미 (금오공과대학교 화학소재융합학부) ;
  • 박세호 (금오공과대학교 화학소재융합학부) ;
  • 최요한 (금오공과대학교 화학소재융합학부) ;
  • 심규동 (금오공과대학교 화학소재융합학부) ;
  • 문성배 (금오공과대학교 화학소재융합학부) ;
  • 장의순 (금오공과대학교 화학소재융합학부) ;
  • 양선아 (계명대학교 식품보건학부) ;
  • 지광환 (금오공과대학교 화학소재융합학부)
  • Received : 2014.12.03
  • Accepted : 2015.02.27
  • Published : 2015.03.31

Abstract

Many applications of nanoparticles have been developed since 1970s. Surface plasmon resonance (SPR) effect can be generated at the surface of nanoparticles by illumination. SPR is the resonant oscillation of conduction electrons at the surface material stimulated by incident light. The collisions between excited electrons and metal atoms can cause the production of thermal energy (photothermal effect). Here, we presented the development of thermo-cosmetics using photothermal effect of gold nanoparticles. Gold nanoparticles (GNPs) were chosen for it's low toxicity. We also and investigated the cell biocompatibility and heating effectiveness for photothermal effect of GNPs. Synthesized GNPs were verified by UV-vis spectrophotometer, where GNP has a characteristic absorbance spectrum. Concentration of GNP was measured by atomic absorption analyzer. The cytotoxicity was confirmed by MTT assay and double staining assay. Photothermal effect of GNP was demonstrated by the thermal increasing properties depending on GNP concentration, which was taken by an IR-thermal camera with a xenon lamp as the light source. If the thermal effect of GNP is applied for thermo-cosmetics, it can supply heat to skin by converting solar energy into thermal energy. Thus, cosmetics containing GNPs can provide benefits to people in the cold region or winter season for maintaining skin temperature, which lead to a positive effect on skin health.

나노입자의 응용은 1970년대부터 발전되어 왔다. 금속 나노입자에 빛을 조사하면 나노입자 표면에서 플라즈몬 공명(SPR, surface plasmon resonance)을 일으킨다. SPR 효과는 금속표면에 입사한 빛에너지에 의해 전자가 여기하며 공명을 일으켜 진동을 발생시키는 현상을 말한다. 여기 된 전자들이 금속원자들과 충돌을 일으키며 열에너지로 전환될 수 있는데 이를 금속의 광열효과(photothermal effect)라고 한다. 우리는 광열 효과를 이용하여 온열 화장품의 개발 가능성을 제시하고자 한다. 온열 화장품의 개발을 위해 생체 독성이 적은 금 나노입자를 선택하여 광열 효과에 있어서의 세포 생체적합성과 열효율을 살펴보았다. 금 나노입자의 합성 상태는 금 나노입자가 갖는 독특한 흡광 스펙트럼으로 확인하였으며, 금 나노입자의 농도는 원자 흡광분석기로 측정하였다. 세포의 독성평가는 MTT assay와 이중 염색법을 사용하였으며, 금 나노입자의 광열 효과는 제논 램프를 광원으로 하여 금 나노입자의 농도의 증가에 따른 광열 효과증대를 적외선-열화상 카메라로 확인하였다. 금 나노입자의 광열 효과를 온열 화장품에 적용한다면 한대 지방의 기후, 또는 겨울철에 태양 에너지를 열에너지로 전환시켜 피부에 손실된 열을 공급, 피부온도 유지에 도움이 되고 피부건강에 긍정적 효과를 주리라 사료된다.

Keywords

References

  1. E. Joe, Properties and Biomedical Applications of Gold Nanoparticles, News & Information for Chemical Engineers, 31(5), 559 (2013).
  2. D Pissuwan, S. M. Valenzuela, and M. B. Cortie, Therapeutic possibilites of plasmonically heated gold nanoparticles, Trends in Biotechnology, 24(2), 62 (2006). https://doi.org/10.1016/j.tibtech.2005.12.004
  3. A. M. Alkilany and C. J. Murphy, Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?, J. Nanopart. Res., 12, 2313 (2010). https://doi.org/10.1007/s11051-010-9911-8
  4. N. Lewinski, V. Colvin, and R. Drezek, Cytotoxicity of nanoparticles, Small, 4(1), 26 (2008). https://doi.org/10.1002/smll.200700595
  5. E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity, Small, 1(3), 325 (2005). https://doi.org/10.1002/smll.200400093
  6. M. Grzelczak, J. Perez-Juste, P. Mulvaney, and L. M. Liz-Marzan, Shape control in gold nanoparticle synthesis, Chemical Society Reviews, 37(9), 1783 (2008). https://doi.org/10.1039/b711490g
  7. L. Dykman and N. Khlebtsov, Gold nanoparticles in biomedical applications: recent advances and perspectives, Chemical Society Reviews, 41(6), 2256 (2012). https://doi.org/10.1039/C1CS15166E
  8. A. M. Alkilany and C. J. Murphy, Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?, Journal of nanoparticle research, 12(7), 2313 (2010). https://doi.org/10.1007/s11051-010-9911-8
  9. D. Lobner, Comparison of the LDH and MTT assays for quantifying cell death: validity for neuronal apoptosis?, Journal of neuroscience methods, 96(2), 147 (2000). https://doi.org/10.1016/S0165-0270(99)00193-4
  10. C. Uboldi, D. Bonacchi, G. Lorenzi, M. I. Hermanns, C. Pohl, G. Baldi, and C. J. Kirkpatrick, Gold nanoparticles induce cytotoxicity in the alveolar type-II cell lines A549 and NCIH441, Part Fibre. Toxicol., 6(18), 1 (2009). https://doi.org/10.1186/1743-8977-6-1
  11. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment, J. Phys. Chem. B, 107(3), 668 (2003). https://doi.org/10.1021/jp026731y
  12. S. Link and M. A. El-Sayed, Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles, J. Phys. Chem. B, 103(21), 4212 (1999). https://doi.org/10.1021/jp984796o
  13. T. Groenewald, Determination of gold (I) in cyanide solutions by solvent extraction and atomic absorption spectrometry, Analytical Chemistry, 40(6), 863 (1968). https://doi.org/10.1021/ac60262a011
  14. A. Simon-Deckers, S. Loo, M. Mayne-L'hermite, N. Herlin-Boime, N. Menguy, C. Reynaud, and M. Carriere, Size-, composition-and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria, Environ. Sci. Technol., 43(21), 8423 (2009). https://doi.org/10.1021/es9016975
  15. J. Jiang, G. Oberdorster, A. Elder, R. Gelein, P. Mercer, and P. Biswas, Does nanoparticle activity depend upon size and crystal phase?, Nanotoxicology, 2(1), 33 (2008). https://doi.org/10.1080/17435390701882478
  16. A. Nel, T. Xia, L. Madler, and N. Li, Toxic potential of materials at the nanolevel, Science, 311(5761), 622 (2006). https://doi.org/10.1126/science.1114397
  17. L. K. Limbach, Y. Li, R. N. Grass, T. J. Brunner, M. A. Hintermann, M. Muller, and W. J. Stark, Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations, Environ. Sci. Technol., 39(23), 9370 (2005). https://doi.org/10.1021/es051043o
  18. B. D. Chithrani, A. A. Ghazani, and W. C. Chan, Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells, Nano letters, 6(4), 662 (2006). https://doi.org/10.1021/nl052396o
  19. Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, and W. Jahnen-Dechent, Size-dependent cytotoxicity of gold nanoparticles, Small, 3(11), 1941 (2007). https://doi.org/10.1002/smll.200700378
  20. T. Andoh, P. B. Chock, and C. C. Chiueh, The roles of thioredoxin in protection against oxidative stress-induced apoptosis in SH-SY5Y cells, J. Biol. Chem., 277(12), 9655 (2002). https://doi.org/10.1074/jbc.M110701200
  21. A. Nel, T. Xia, L. Madler, and N. Li,. Toxic potential of materials at the nanolevel, Science, 311(5761), 622 (2006). https://doi.org/10.1126/science.1114397
  22. Y. F. Huang, K. Sefah, S. Bamrungsap, H. T. Chang, and W. Tan, Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods, Langmuir, 24(20), 11860 (2008). https://doi.org/10.1021/la801969c