DOI QR코드

DOI QR Code

Observation of Interfacial Adhesion in Silica-NR Compound by Using Bifunctional Silane Coupling Agent

양기능성 커플링제 실란에 의한 실리카-천연고무 복합소재의 계면간 결합 고찰

  • Received : 2014.06.06
  • Accepted : 2014.08.20
  • Published : 2015.03.25

Abstract

Formation of a strong 3-dimensional interfacial network structure via chemical reaction between hydroxyl group on silica surface and NR chain by the addition of bis(triethoxysilylpropyl)tetrasulfide (TESPT) into silica-filled NR compound was observed by using Py-GC/MS and SEM. Addition of TESPT into silica-filled NR compound decreased scorch time ($t_{10}$) due to increased sulfur content, and reduced cure rate index (CRI) via continuous reaction between sulfur atoms in TESPT, which acted as a sulfur donor, and activators and/or accelerators. Addition of TESPT in the compound improved processability and mechanical properties of the compound. Overall, we observed that the addition of TESPT into the silica-filled NR compound formed a silica-TESPT-NR network, and thus the degree of crosslinking was increased resulting in improved mechanical properties.

양기능성 실란 커플링제인 bis(triethoxysilylpropyl)tetrasulfide(TESPT)가 실리카/천연고무 복합소재 내에서 실리카의 hydroxy기와 고무 계면간에 화학적 결합반응을 하여 실리카-실란-고무간의 3차원 사슬구조를 형성한 것을 열분해 가스 크로마토그래피 질량분석기(Py-GC/MS)와 주사전자현미경(SEM)을 통해 관찰하였다. TESPT의 첨가로 배합물 내의 황 함유율이 증가하여 스코치 시간($t_{10}$)은 감소하고, TESPT 내 sulfur donor 역할을 하는 황이 활성화제 및 촉진제와의 복합반응으로 가교반응이 지속적으로 이루어짐에 따라서 가교속도지수(CRI)의 값이 감소하였다. 또한 TESPT가 첨가된 컴파운드는 첨가되지 않은 컴파운드에 비해 가공성 및 기계적 물성이 향상되었다. 결과적으로, 실리카로 충전된 천연고무 복합소재에 실란 커플링제(TESPT)가 첨가되어 화학반응으로 실리카-실란-고무간의 3차원 사슬구조가 형성됨을 관찰하였고 이에 따라 가교밀도가 증가하여 복합소재의 물성 증가에 기여함을 보여주었다.

Keywords

References

  1. S. Wolff, Rubb. Chem. Technol., 69, 325 (1996). https://doi.org/10.5254/1.3538376
  2. J. L. White and K. J. Kim, Thermoplastic and Rubber Compounds: Technology and Physical Chemistry, Hanser, Munich, 2008.
  3. Y. C. Ou, Z. Z. Yu, A. Vida, and J. B. Donnet, Rubb. Chem. Technol., 67, 834 (1994). https://doi.org/10.5254/1.3538714
  4. M. Wang, S. X. Lu, and K. Mahmud, J. Polym. Sci., Polym. Phys. Ed., 38, 1240 (2000). https://doi.org/10.1002/(SICI)1099-0488(20000501)38:9<1240::AID-POLB15>3.0.CO;2-Q
  5. Z. S. Petrovic, I. Jvani, A. Waddon, and G. Banhegyi, J. Appl. Polym. Sci., 76, 133 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000411)76:2<133::AID-APP3>3.0.CO;2-K
  6. K. J. Kim and J. L. White, J. Ind. Eng. Chem., 6, 262 (2000).
  7. P. Sae-oui, U. Thepsuwan, and K. Hatthapanit, Polym. Test., 23, 397 (2004). https://doi.org/10.1016/j.polymertesting.2003.10.002
  8. K. J. Kim and J. L. White, J. Ind. Eng. Chem., 7, 50 (2001).
  9. K. J. Kim and J. L. White, J. Ind. Eng. Chem., 6, 372 (2000).
  10. S. Kohjiya and Y. Ikeda, Rubb. Chem. Technol., 73, 534 (2000). https://doi.org/10.5254/1.3547604
  11. U. Gorl, J. Munzenberg, D. Luginsland, and A. Muller, Kautsch. Gummi Kunstst., 52, 588 (1998).
  12. R. Rauline, U.S. Patent 5,227,425 (1993).
  13. U. Gorl, A. Hunsche, A. Mueller, and H. G. Koban, Rubb. Chem. Technol., 70, 608 (1997). https://doi.org/10.5254/1.3538447
  14. K. J. Kim and J. VanderKooi, Kautsch Gummi Kunstst., 55, 518 (2002).
  15. K. J. Kim and J. VanderKooi, Rubb. Chem. Technol., 78, 84 (2005). https://doi.org/10.5254/1.3547875
  16. H. Ishida, Polym. Compos., 5, 101 (1984). https://doi.org/10.1002/pc.750050202
  17. H. Ishida and J. L. Koenig, J. Colloid Interface Sci., 106, 334 (1985). https://doi.org/10.1016/S0021-9797(85)80007-2
  18. S. Wolff, Kautsch. Gummi Kunstst., 30, 516 (1977).
  19. E. G. Rochow, J. Amer. Chem. Soc., 67, 963 (1945). https://doi.org/10.1021/ja01222a026
  20. K. J. Kim, J. Appl. Polym. Sci., 124, 2937 (2012). https://doi.org/10.1002/app.35329
  21. A. Ansarifr, H. P. Lim, and R. Nijhawan, Int. J. Adhes. Adhes., 24, 9 (2004). https://doi.org/10.1016/S0143-7496(03)00095-2
  22. A. S. Hashim, B. Azahari, Y. Ikeda, and S. Kohjiya, Rubb. Chem. Technol., 71, 289 (1998). https://doi.org/10.5254/1.3538485
  23. A. I. Isayev, C. K. Hong, and K. J. Kim, Rubb. Chem. Technol., 76, 923 (2003). https://doi.org/10.5254/1.3547782
  24. K. J. Kim, Asian J. Chem., 25, 5119 (2013).
  25. S. M. Kim and K. J. Kim, Polymer(Korea), 38, 1 (2014).
  26. R. P. Lattimer, J. Anal. Appl. Pyrol., 26, 65 (1993). https://doi.org/10.1016/0165-2370(93)85019-U
  27. J. S. Dick, Basic Rubber Testing: Selecting Methods for a Rubber Test Program, ASTM International, West Conshohocken, 2003.
  28. A. N. Gent, Engineering with Rubber: How to Design Rubber Component, Hanser, Munich, 2001.
  29. O. Klockmann and A. Hasse, RubberChem., The 5th International Conference, Munich, Germany, December 5-6, 2006
  30. S. S. Zumdahl, Chemistry, 5th Ed., Houghton Mifflin College Div, 1999.
  31. S. H. Ha, S. W. Kim, and H. K. Jeong, Asian J. Chem., 25, 5245 (2013).
  32. M. Mende, S. Schwarz, G. Petzold, and W. Jaeger, J. Appl. Polym. Sci., 103, 3776 (2007). https://doi.org/10.1002/app.25573
  33. T. F. Tadros, J. Colloid Interface Sci., 64, 36 (1978). https://doi.org/10.1016/0021-9797(78)90332-6
  34. A. Hasse, O. Klockmann, A. Wehmeier, H. D. Luginsland, and Koln, Kautsch. Gummi Kunstst., 55, 236 (2002).
  35. K. J. Kim, Elast. Compos., 44, 134 (2009).
  36. N. J. Morrison and M. Porter, Rubb. Chem. Technol., 57, 63 (1984). https://doi.org/10.5254/1.3536002
  37. S. Wolff, Kautsch. Gummi Kunstst., 34, 280 (1981).
  38. R. K. Gupta, E. Kennal, and K. J. Kim, Polymer Nanocomposites Handbook, CRC Press, Boca Raton, 2009.
  39. C. R. Parks and R. J. Brown, Rubb. Chem. Technol., 49, 233 (1976). https://doi.org/10.5254/1.3534960
  40. N. Hewitt, Compounding Precipitated Silica in Elastomers: Theory and Practice, William Andrew, Norwich, NY, 2007
  41. P. Ghosh, S. Katare, P. Patkar, J. M. Caruthers, and V. Venkatksubramanian, Rubb. Chem. Technol., 76, 592 (2003). https://doi.org/10.5254/1.3547762
  42. A. M. Salvi, R. Pucciariello, M. R. Guascito, V. Villani, and L. Intermite, Surf. Interface Anal., 33, 850 (2002). https://doi.org/10.1002/sia.1463
  43. S. Wolff, Kautsch. Gummi Kunstst., 32, 312 (1979).