DOI QR코드

DOI QR Code

음폐수 산발효 조건에 따른 바이오가스 생산량에 관한 연구

A Study on Biogas Yield According to Food Waste Leachate Acid Fermentation Conditions

  • 문광석 (서울과학기술대학교 에너지환경대학원) ;
  • 박대원 (서울과학기술대학교 에너지환경대학원) ;
  • Moon, Kwangseok (Graduate School of energy and Environment, Seoul National University of Technology & Science) ;
  • Pak, Daewon (Graduate School of energy and Environment, Seoul National University of Technology & Science) ;
  • Kim, Jaehyung (Graduate School of energy and Environment, Seoul National University of Technology & Science)
  • 투고 : 2015.06.29
  • 심사 : 2015.11.03
  • 발행 : 2015.12.31

초록

본 연구에서는 음식물류 폐기물 폐수(이하, 음폐수)를 이용하여 혐기성발효 시 부산물로 생성되는 메탄가스의 생산효율을 높이고자 산발효 전처리를 수행하였으며 전처리된 음폐수를 이용하여 BMP 실험을 통해 메탄생산량 증대를 위한 산발효 최적조건을 확인하고자 하였다. 산발효된 음폐수를 이용하여 BMP 실험을 진행한 결과 HRT 3일 조건에서 0.220 L/g VS의 가장 높은 메탄생산량을 확인하였으며, 초기 pH별 BMP실험에서는 pH 6에서 19,920 mg/L로 가장 높은 VFA와 Acetic acid/TVFA(76.2%)를 보였다. 이때 메탄생산은 약 10일 이내로 대부분 생산되어 일반적인 메탄발효(30일 이내)에 비해 약 1/3수준으로 단축됨을 확인하였다. 메탄생성량은 0.294 L/g VS로 대조군 대비 약 1.3배 높은 효율을 나타내었다.

This study performed acid fermentation pre-treatment to improve production efficiency of methane that is produced as a product in case of anaerobic fermentation by using food waste leachate, and attempted to confirm the acid fermentation optimum through the BMP test by using pre-treated food waste leachate to increase the yield of methane. As a result of the BMP experiment by using acid fermented food waste leachate, the highest yield of methane of 0.220 L/g VS was confirmed in the HRT three-day condition, and in the initial BMP test by pH, pH 6 was 19,920 mg/L that the highest VFA and acetic acid/TVFA(76.2%) were shown. At this time, it was confirmed that the yield of methane was mostly within 10 days that was reduced to around one-third compared to the general methane fermentation (within 30 days). As the yield of methane was 0.294 L/g VS, it showed a high efficiency of around 1.3 times compared to the control group.

키워드

참고문헌

  1. 음식물류 폐기물 관리정책 방향 및 개선방향 연구, 환경부, 2012.
  2. 대구시 음식물류폐기물 발생폐수 적정 처리방안, 대구경북연구원, 2010.
  3. 음식물류 폐기물 처리시설 발생폐수 육상처리 및 에너지화 종합대책, 환경부, 2007.
  4. 2013년 음식물류 폐기물 처리시설 설치 ․ 운영 현황, 환경부, 2014.
  5. Kelleher, B. P., J. J. Leahy, A. M. Henihan, T. F. O'Dwyer, D. Sutton, and M. J. Leahy. 2000. dvances in poultry litter disposal technology-a review. Bioresour. Technol. 83: 27-36.
  6. H. Carrere, C. Dumas, A. Battimelli, D. J. Baststone, J. P. Delgenes, J. P. Steyer, I. Ferrer, "Pretreatment methods to improve sludge anaerobic degradability: A review", Journal of Hazardous materials, 183, 2000, 1-15.
  7. M. R. Salsabil, A. Prorot, M. Casellas, C. Dagot, "Pre-treatment of activated sludge: Effect of sonication on aerobic and anaerobic digestibility", Chem. Eng. J., 148, 2009, 327-335. https://doi.org/10.1016/j.cej.2008.09.003
  8. H. Li, Y. Y. Jin, R. B. Mahar, Z. Y. Wang, Y. F. Nie, "Effects of ultrasonic disintegration on sludge microbial activity and dewaterability", J. Hazard. Mater., 161, 2009, 1421-1426. https://doi.org/10.1016/j.jhazmat.2008.04.113
  9. M. Dohanyos, J. Zabranska, J. Kutil, P. Jenicek, "Improvement of anaerobic digestion of sludge", Water Sci. Technol., 49, 2004, 89-96.
  10. C. Fjordside, "An operating tale from Næstved Sewage Treatment Plant", in: Municipal wastewater treatment Nordic Conference, Copenhagen (Denmark), 2001
  11. X. Yang, X. Wang, L. Wang, "Transferring of components and energy output in industrial sewage sludge disposal by thermal pretreatment and two-phase anaerobic process", Bioresour. Technol., 101, 2010, 2580-2584. https://doi.org/10.1016/j.biortech.2009.10.055
  12. D. H. Lee, S. K. Behera, J. W. Kim, H. S. Park, "Methane production potential of leachate generated from Korean food waste recycling facilities: a lab-scale study", Waste Manag., 29, 2009, 876-882. https://doi.org/10.1016/j.wasman.2008.06.033
  13. M. J. Han, S. K. Behera, H. S. Park, "Anaerobic co-digestion of food waste leachate and piggery wastewater for methane production: statistical optimization of key process parameters, J. Chem. Technol. Biotechnol., 87, 2012, 1541-1550. https://doi.org/10.1002/jctb.3786
  14. S. K. Cho, W. T. Im, D. H. Kim, M. H. Kim, H. S. Shin, S. E. Oh, "Dry anaerobic digestion of food waste under mesophilic conditions: performance and methanogenic community analysis", Bioresour. Technol., 131, 2013, 210-217. https://doi.org/10.1016/j.biortech.2012.12.100
  15. H. S. Shin, S. K. Han, Y. C. Song, C. Y. Lee, "Performance of UASB reactor treating leachate from acidogenic fermenter in the two-phase anaerobic digestion of food waste", Water Res, 35, 2001, 3441-3447. https://doi.org/10.1016/S0043-1354(01)00041-0
  16. S. G. Shin, G. Han, J. Lim, C. Lee, S. Hwang, "A comprehensive microbial insight into two-stage anaerobic digestion of food waste-recycling wastewater", Water Res, 44, 2010, 4838-4849. https://doi.org/10.1016/j.watres.2010.07.019
  17. J. Y. Wang, H. L. Xu, J. H. Tay, "A hybrid two-phase system for anaerobic digestion of food waste", Water Sci Technol, 45, 2002, 159-165.
  18. C. Lee, J. Kim, S.G. Shin, V. O'Flaherty, S. Hwang, "Quantitative and qualitative transitions of methanogen community structure during the batch anaerobic digestion of cheese-processing wastewater", Appl Microbiol Biotechnol, 87, 2010, 1963-1973. https://doi.org/10.1007/s00253-010-2685-1
  19. C-F. Chu, Y. Ebie, K-Q. Xu, Y-Y. Li, Y. Inamori, "Characterization of microbial community in the two-stage process for hydrogen and methane production from food waste", Int J Hydrogen Energy, 35, 2010, 8253-8261. https://doi.org/10.1016/j.ijhydene.2009.12.021
  20. APHA, AWWA and WEF : Standard methods for the examination of water and wastewater, 20th ed. Baltimore, American Public Health Association 2, 1998. 16. M. S.
  21. 김동훈, 신항식, 오세은, "이단 혐기성 소화공정을 이용한 음폐수의 처리 및 바이오가스 생산", 한국폐기물학회지, 25(8), 2008, 716-722.
  22. 박종웅, 최독혁, "음폐수를 탄소원으로 이용시 생분해 및 탈질특성에 미치는 영향", 한국도시환경학회지, 11(1), 2011, 41-48.
  23. 김동훈, 신항식, 조시경, 박홍석, 윤석표, "음폐수 주입을 통한 생활폐기물 매립지의 메탄가스 발생량 증진에 관한 현장 실험", 한국폐기물자원순환학회지, 27(4), 2010, 331-338.
  24. Verma S., "Anaerobic digestion of biodegradable organics in municipal solid wastes", Master's thesis, Applied Science Columbia University, New York, NY, USA; May, 2002.
  25. Yu, L., Bule, M., Ma, J., Frear, C., Chen, S., "Enhancing volatile fatty acid (VFA) and biomethane production from lawn grass with pretreatment", Bioresour. Technol., 162, 2014, 243-249. https://doi.org/10.1016/j.biortech.2014.03.089
  26. Stephen H. Z., "Conversion of acetic acid to methane by thermophiles", FEMS Microbiology Letters, 75, 1990, 125-137. https://doi.org/10.1111/j.1574-6968.1990.tb04090.x

피인용 문헌

  1. Characteristics of Food Wastes and Its Hydrolysis Conditions vol.13, pp.1, 2017, https://doi.org/10.7849/ksnre.2017.3.13.1.036