DOI QR코드

DOI QR Code

Preparation and Characterization of Functional Microcapsules Containing Suspensions of Conducting Materials

전도성 물질 서스펜션을 함유한 마이크로캡슐

  • Ihm, DaeWoo (Department of Chemical Engineering, Hoseo University) ;
  • Kwon, Won Ho (Department of Chemical Engineering, Hoseo University)
  • 임대우 (호서대학교 화학공학과) ;
  • 권원호 (호서대학교 화학공학과)
  • Received : 2014.09.23
  • Accepted : 2014.12.24
  • Published : 2015.02.10

Abstract

Microcapsules containing the suspension of conducting materials such as carbon nanotube (CNT) or polyaniline (PANI) were prepared by in-situ polymerization of melamine and formaldehyde. Stable microcapsules were prepared and the mean diameter of the observed microcapsules was in the range of $10-20{\mu}m$. The surface morphology and chemical structure of microcapsules were investigated using optical microscope (OM), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FT-IR). The thermal properties of samples were investigated by thermogravimetric analysis (TGA). The conductivity of ruptured microcapsule containing the suspension of CNTs or PANIs in tetrachloroethylene and Isopar-G was measured. As the amount of CNTs and PANIs in the core of microcapsules increased, the measured current increased. Conductivity measurement results suggest that poly (melamine-formaldehyde) based core-shell microcapsules could be applied to self-healing electronic materials systems, where CNTs or PANIs bridge a broken circuit upon release.

카본나노튜브(CNT)와 폴리아닐린(PANI)과 같은 도전성물질의 서스펜션을 함유한 마이크로캡슐이 멜라민과 포름알데히드의 in situ 중합법에 의해 제조되었다. 평균직경 $10-20{\mu}m$의 안정된 마이크로캡슐이 관찰되었으며, 이 마이크로 캡슐의 표면 모폴로지와 화학구조, 열적특성을 광학현미경, 주사전자현미경(SEM), 적외선 분광분석(FT-IR), 열중량분석(TGA) 등으로 측정하였다. 테트라클로로에틸렌과 아이소파 G (isopar-G) 및 CNT나 PANI로 구성된 도전성물질 서스펜션을 함유한 마이크로캡슐의 전기전도도를 캡슐벽을 깨뜨린 후 측정하였다. 마이크로캡슐의 심물질인 CNT나 PANI의 양이 증가할수록 측정된 전류는 증가하였다. 분쇄된 캡슐의 심물질의 전도도를 측정한 결과는 CNT나 PANI가 캡슐이 깨졌을 때, 빠져나온 심물질인 전도성 물질이 단락된 서킷을 연결해 줄 수 있는, 자기치유형 전자재료 시스템에 폴리 멜라민 포름알데히드 베이스의 코어 쉘(core shell) 마이크로캡슐이 적용 가능한 것을 보여준다.

Keywords

References

  1. C. Thies, A survey of microencapsulation technology, In: S. Benita (ed.), Microencapsulation: methods and industrial applications, 1-19, Marcel Dekker, NY, USA (1996).
  2. S. K. Ghosh, Functional coatings by polymer microencapsulation, 12-25, Wiley-VCH, Hoboken, USA (2006).
  3. T. Kondo and M. Koish, Microcapsule, 112-140, Sankyo, Tokyo, Japan (1987).
  4. A. Shulkin and H. D. H. Stover, Polymer microcapsules by interfacial polyaddition between styrene-maleic anhydride copolymers and amines, J. Membr. Sci., 209, 421-432 (2002). https://doi.org/10.1016/S0376-7388(02)00348-4
  5. Y. I. Huang, Y. H. Cheng, C. C. Yu, T. R. Tsai, and T. M. Cham, Microencapsulation of extract containing shikonin using gelatin-acacia coacervation method: A formaldehyde-free approach, Colloids Surf. B. Biointerfaces, 58, 290-297 (2007). https://doi.org/10.1016/j.colsurfb.2007.04.013
  6. E. N. Brown, M. R. Kessler, N. R. Sottos, and S. R. White, In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene, J. Microencapsul., 20, 719-730 (2003). https://doi.org/10.3109/02652040309178083
  7. J. M. Jacobson, P. S. Drazaic, and I. D. Morrison, Electrophoretic displays using nanoparticles, US Patent, 6,323,989 (2001).
  8. J. D. Albert, B. Comiskey, J. M. Jacobson. L. Hang, A. Loxley, R. Feeney, P. S. Drazaic, and I. D. Morrison, A multi-color, encapsulated electrophoretic displays and materials for making the same, US Patent, 6,017,584 (2002).
  9. S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R.Sriram, E. N. Brown, and S. Viswanathan, Autonomic healing of polymer composites, Nature, 409, 794-797 (2001). https://doi.org/10.1038/35057232
  10. S. H. Cho, H. M. Andersson, S. R. White, N. R. Sottos, and P. V. Braun, Polydimethylsiloxane-Based Self-Healing Materials, Adv. Mater., 18, 997-1000 (2006). https://doi.org/10.1002/adma.200501814
  11. S. R. White, M. M. Caruso, and J. S. Moore, Autonomic Healing of polymers, MRS Bull., 33, 766-769 (2008). https://doi.org/10.1557/mrs2008.163
  12. C. Dry, Procedures developed for self-repair of polymer matrix composite materials, Composite Structures, 35, 263-269 (1996). https://doi.org/10.1016/0263-8223(96)00033-5
  13. M. R. Kessler and S. R. White, Self-activated healing of delamination damage in woven composites, Composites: Part A, 32, 683-699 (2001).
  14. S. Ijima, Helical microtubules of graphitic carbon, Nature, 354, 56-58 (1991). https://doi.org/10.1038/354056a0
  15. M. Pumera, Carbon nanotube biosensors based on electrochemical detection, In: K. Balasubramanian and M. Burghard (eds.), Carbon Nanotubes, 205-212, Humana Press, NY, USA (2010).
  16. J. P. Salvetat, G. Desarmot, C. Gauthier, and P. Poulin, J.-P. Salvetat, G. D, Mechanical properties of individual nanotubes and composites, In : A. Loiseau, P. Launois, P. Petit, S. Roche J.-P. Salvetat (eds.), Understanding Carbon Nanotubes, 459-487, Springer-Verlag, Berlin, Germany (2006).
  17. E. T. Thostenson and T.-W. Chou, Carbon nanotube networks: Sensing of distributed strain and damage for life prediction and self healing, Adv. Mater., 18, 2837-2841 (2006). https://doi.org/10.1002/adma.200600977
  18. Z. Yao, H. W. Ch. Poatma, L. Balents, and C. Dekker, Carbon nanotube intramolecular junctions, Nature, 402, 273-276 (1999). https://doi.org/10.1038/46241
  19. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, Nanotube molecular wires as chemical sensors, Science, 287, 622-625 (2000). https://doi.org/10.1126/science.287.5453.622
  20. J. Y. Kim, M. H. Kwon, Y. K. Min, S. Kwon, and D. W. Ihm, Self-assembly and crystalline growth of Poly(3,4-ethylenedioxythiophene) nanofilms, Adv. Mater., 19, 3501-3506 (2007). https://doi.org/10.1002/adma.200602163
  21. M. Wan, Conducting Polymers with Micro or Nanometer Structure, 16-21, Springer, NY, USA (2008).
  22. M. Keller, Encapsulation-based self-healing polymers and composites, In: W.Hayes, and B.W.Greenland (eds.), Healable Polymer Systems, 16-57, Royal Society of Chemistry, Cambridge, UK (2013).
  23. S. A. Odom, M. M. Caruso, A. D. Finke, A. M. Prokup, J. A. Ritchey, J. H. Leonard, S. R. White, N. R. Sottos, and J. S. Moore, Restoration of conductivity with TTF-TCNQ charge-transfer salts, Adv. Funct. Mater., 20, 1721-1727 (2010). https://doi.org/10.1002/adfm.201000159
  24. S. A. Odom, S. Chayanupatkul, B. J. Blaiszik, O. Zhao, A. C. Jackson, P. V. Braun, N. R. Sottos, S. R. White, and J. S. Moore, A self-healing conducting ink, Adv. Mater., 24, 2578-2581 (2012). https://doi.org/10.1002/adma.201200196
  25. M. M. Caruso, S. R. Schelkopf, A. C. Jackson, A. M. Landry, P. V. Braun, and J. S. Moore, Microcapsules containing suspensions of carbon nanotubes, J. Mater. Chem., 19, 6093-6096 (2009). https://doi.org/10.1039/b910673a
  26. Y. H. Lee, C. A. Kim, W. H. Jang, H. J. Choi, and M. S. Son, Synthesis and electrorheological characteristics of microencapsulated polyaniline particles with melamine-formaldehyde resins, Polymer, 42, 8277-8283 (2001). https://doi.org/10.1016/S0032-3861(01)00342-1
  27. V. G. Kulkami, L. D. Campbell, and W. R. Mathew, Thermal stability of polyaniline, Synth. Met., 30, 321-325 (1989). https://doi.org/10.1016/0379-6779(89)90654-1
  28. P. V. Kamat, K. G. Thomas, S. Barazzouk, G. Girishkumar, K. Vinodgopal, and D. Meisel, Self-assembled linear bundles of single wall carbon nanotubes and their alignment and deposition as a film in a dc field, J. Am. Chem. Soc., 126, 10757-10762 (2004). https://doi.org/10.1021/ja0479888
  29. M. S. Kumar, S. H. Lee, T. Y. Kim, T. H. Kim, S. M. Song, J. W. Yang, K. S. Nahm, and E. K. Suh, DC electric field assisted alignment of carbon nanotubes on metal electrodes, Solid-State Electronics, 47, 2075-2080 (2003). https://doi.org/10.1016/S0038-1101(03)00258-2
  30. S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, Anomalous thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett., 79, 2252-2254 (2001). https://doi.org/10.1063/1.1408272