DOI QR코드

DOI QR Code

실시간 에볼라 바이러스 전염병 모형의 전염확률분포추정

A transmission distribution estimation for real time Ebola virus disease epidemic model

  • Choi, Ilsu (Department of Statistics, Chonnam National University) ;
  • Rhee, Sung-Suk (Department of Business Administration, Seowon University)
  • 투고 : 2014.12.21
  • 심사 : 2015.01.10
  • 발행 : 2015.01.31

초록

전염병은 기초 감염 재생산 수가 시간에 따라 달라져서 상황을 관리하기 어렵기 때문에 확산을 통제하기 어려울 뿐 아니라 정확한 예측은 더욱 어렵다고 알려져 있다. 최근에 많은 모형들이 새롭게 제시되고 있으며 그에 따라 현저하게 다른 결과가 도출되고 있다. 연속된 시간에서 기초 감염 재생산 수는 일반적으로 확률과정이론이 적용되고 있다. 본 논문에서는 에볼라 바이러스 전염병 모형에서 전염확률분포의 추정 방법을 제시하였다. 이 방법은 대규모 전염병 발생에서 실시간 추정을 가능하게 함으로 적절한 질병관리를 용이하게 한다. 기니에서 발생한 에볼라 바이러스 자료를 제시한 방법으로 분석하였다.

The epidemic is seemed to be extremely difficult for accurate predictions. The new models have been suggested that show quite different results. The basic reproductive number of epidemic for consequent time intervals are estimated based on stochastic processes. In this paper, we proposed a transmission distribution estimation for Ebola virus disease epidemic model. This estimation can be easier to obtain in real time which is useful for informing an appropriate public health response to the outbreak. Finally, we implement our proposed method with data from Guinea Ebola disease outbreak.

키워드

참고문헌

  1. Althaus, C. L. (2014). Estimating the reproduction number of Ebola virus (EBOV) during the 2014 outbreak in west Africa. Plos Currents Outbreaks, 10, 1-9.
  2. Ball, F. and Donnelly, P. (1995). Strong approximations for epidemic models. Stochastic Processes and their Applications, 55, 1-21. https://doi.org/10.1016/0304-4149(94)00034-Q
  3. Becker, N. and Britton, T. (1999). Statistical studies of infectious disease incidence. Journal of the Royal Statistical Society B, 61, 287-307. https://doi.org/10.1111/1467-9868.00177
  4. Chowell, G., Hengartner, N. W., Castillo-Chavez, C., Fenimore, P. W. and Hyman, J. M. (2004). The basic reproductive number of Ebola and the effects of public health measures: The cases of Congo and Uganda. Journal of Theoretical Biology, 229, 119-126. https://doi.org/10.1016/j.jtbi.2004.03.006
  5. Chowell, G. and Nishiura, H. (2014). Transmission dynamics and control of Ebola virus disease (EVD): A review. BMC Medicine, 12, 196. https://doi.org/10.1186/s12916-014-0196-0
  6. Evans, R. J. and Mammadov, M. (2014). Dynamics of Ebola epidemics in west Africa 2014. arXiv preprint arXiv:1412.1579, 1-9.
  7. Hwang, J. and Oh, C. (2014). A study on the spread of the foot-and-mouth disease in Korea in 2010/2011. Journal of the Korean Data & Information Science Society, 25, 271-280. https://doi.org/10.7465/jkdi.2014.25.2.271
  8. Minka, T. P. (2002). Estimating a gamma distribution, Technical Report, Microsoft Research, Cambridge, UK.
  9. Na, K., Choi, I. and Kim, Y. (2010). Estimation of the incubation period of P. vivax malaria in Korea from 2006 to 2008. Journal of the Korean Data & Information Science Society, 21, 1237-1242.
  10. Nishiura, H. and Chowell, G. (2014). Early transmission dynamics of Ebola virus disease (EVD), west Africa, March to August 2014. Euro Surveill , 19, 5-10.
  11. Oh, C. (2014). Derivation of the likelihood function for the counting process. Journal of the Korean Data & Information Science Society, 25, 169-176. https://doi.org/10.7465/jkdi.2014.25.1.169
  12. Rahman, M. and Muraduzzaman, S. M. (2010). Likelihood ratio in estimating gamma distribution parameters, Journal of the Korean Data & Information Science Society, 21, 345-354.
  13. Wallinga, J. and Teunis, P. (2004). Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. American Journal of Epidemiology, 160, 509-516. https://doi.org/10.1093/aje/kwh255
  14. White, L. F. and Pagano, M. (2008). A likelihood-based method for real-time estimation of the serial interval and reproductive number of an epidemic. Statistics in Medicine, 27, 2999-3016. https://doi.org/10.1002/sim.3136

피인용 문헌

  1. 베이지안 음이항 분기과정을 이용한 한국 메르스 발생 연구 vol.28, pp.1, 2015, https://doi.org/10.7465/jkdi.2017.28.1.153
  2. 절삭 혼합모형을 이용한 우리나라 삼일열 말라리아 장단기 잠복기 비율 추정 vol.29, pp.4, 2015, https://doi.org/10.7465/jkdi.2018.29.4.1025