• Title/Summary/Keyword: Ebola virus

Search Result 11, Processing Time 0.03 seconds

Systemic and oral manifestations of Ebola virus disease (에볼라 바이러스 감염의 전신 및 구강내 소견)

  • Kim, Min Ji;Kim, Hui Young;Kim, Soung Min;Myoung, Hoon;Lee, Jong Ho
    • The Journal of the Korean dental association
    • /
    • v.54 no.1
    • /
    • pp.67-83
    • /
    • 2016
  • Ebola virus disease is a lethal viral hemorrhagic fever that has been boiling in sub-Saharan Africa since 1970s. Last year, The Ebola virus epidemic that has spread not only mainly in West Africa, but also in locals such as USA, Europe and the Antipodes via infected travelers, was brought up. Human-to-human transmission of Ebola virus disease is known only through direct contact with the blood, secretions, tissues or other bodily fluids, including saliva. Although there has not been reported infection cases in the dental healthcare settings, the fact that the infection of the Ebola virus may be made from human secretions such as saliva suggests that there is a high risk of infection for the Ebola virus of dental healthcare workers. Therefore, it is important dental healthcare workers to identify infection-suspected patients through the oral findings for infection prevention. This article will review the oral signs and symptoms of Ebola virus disease and discuss the pathogenesis, treatment and prevention. Furthermore, Infection control guidelines for oral healthcare workers are also proposed.

  • PDF

Study on Laboratory Diagnosis of the Ebola Virus and Its Current Trends (에볼라 바이러스 진단법과 개발 동향에 관한 고찰 연구)

  • Jeong, Hye Seon;Kang, Yun-Jung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.3
    • /
    • pp.105-111
    • /
    • 2015
  • In late December 2013, the Ebola virus emerged from West Africa. The outbreak started in Guinea and rapidly spread to Liberia and Sierra Leone. Initially, the virus is spread to the human population after contact with infected wildlife and then spread person-to-person through direct contact with body fluids such as blood, sweat, urine, semen, and breast milk. The Ebola virus infects endothelial cells, mononuclear phagocytes and hepatocytes. It causes massive damage to internal tissues and organs, such as blood vessels and the liver, and ultimately death. Most tests for the virus RNA rely on a technology called reverse-transcriptase polymerase chain reaction (RT-PCR). While this method is highly sensitive, it is also expensive, requiring skilled scientists, and delicate power supplies. The strip analytical technique (enzyme-linked immunosorbent assay or ELISA) detects antigens or antibodies to the Ebola virus. This test is cheap and does not require electricity or refrigeration. Despite ongoing efforts directed at experimental treatments and vaccine development, current medical work on the Ebola viral disease is largely limited to supportive therapy. Thus, rapid and reliable diagnoses of the Ebola virus are critically important for patient management, infections, prevention, and control measures.

Ebola Hemorrhagic Fever Outbreaks: Diagnosis for Effective Epidemic Disease Management and Control (에볼라 출혈열 발병 : 효과적인 전염병 관리 및 통제를 위한 진단)

  • Kang, Boram;Kim, Hyojin;Macoy, Donah Mary;Kim, Min Gab
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.2
    • /
    • pp.87-92
    • /
    • 2017
  • The first Ebola hemorrhagic fever outbreak occurred in the Democratic Republic of Congo and Sudan in 1976 and then emerged in West Africa in 2014 with a total of 27,741 cases and 11,284 deaths. The fever is caused by the Ebola virus, which belongs to the Filoviridae family and contains a ssRNA genome. The known subtypes of the virus are Bundibugyo ebolavirus, Reston ebolavirus, Sudan ebolavirus, $Ta\ddot{i}$ Forest ebolavirus, and Zaire ebolavirus. The Ebola outbreak was historically originated majorly from the East and Central African tropical belt. The current outbreaks in West Africa caused numerous deaths and spread fear in global society. In the absence of effective treatment strategies and any vaccine, accurate diagnosis is the most important contributing factor in the management and control of the epidemic disease. WHO (World Health Organization) has announced emergency guidance for the selection and use of Ebola in in vitro diagnostic assays. Numerous companies and research institutions have studied the various diagnosis methods and identified four WHO procurement approved as diagnosis kits: RealStar Ebolavirus Screen RT-PCR kit 1.0 (Altona), Liferiver-Ebola Virus (EBOV) Real time RT-PCR kit, Xpert Ebola Assay, and ReEBOV Antigen Rapid Test Kit. The efficiency of novel diagnostic kits such as Rapid Diagnosis Test (RDT) is currently being evaluated.

A transmission distribution estimation for real time Ebola virus disease epidemic model (실시간 에볼라 바이러스 전염병 모형의 전염확률분포추정)

  • Choi, Ilsu;Rhee, Sung-Suk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.1
    • /
    • pp.161-168
    • /
    • 2015
  • The epidemic is seemed to be extremely difficult for accurate predictions. The new models have been suggested that show quite different results. The basic reproductive number of epidemic for consequent time intervals are estimated based on stochastic processes. In this paper, we proposed a transmission distribution estimation for Ebola virus disease epidemic model. This estimation can be easier to obtain in real time which is useful for informing an appropriate public health response to the outbreak. Finally, we implement our proposed method with data from Guinea Ebola disease outbreak.

Antiviral activity of sertindole, raloxifene and ibutamoren against transcription and replication-competent Ebola virus-like particles

  • Yoon, Yi-Seul;Jang, Yejin;Hoenen, Thomas;Shin, Heegwon;Lee, Younghoon;Kim, Meehyein
    • BMB Reports
    • /
    • v.53 no.3
    • /
    • pp.166-171
    • /
    • 2020
  • A chemical library comprising 2,354 drug-like compounds was screened using a transcription and replication-competent viruslike particle (trVLP) system implementing the whole Ebola virus (EBOV) life cycle. Dose-dependent inhibition of Ebola trVLP replication was induced by 15 hit compounds, which primarily target different types of G protein-coupled receptors (GPCRs). Based on the chemical structure, the compounds were divided into three groups, diphenylmethane derivatives, promazine derivatives and chemicals with no conserved skeletons. The third group included sertindole, raloxifene, and ibutamoren showing prominent antiviral effects in cells. They downregulated the expression of viral proteins, including the VP40 matrix protein and the envelope glycoprotein. They also reduced the amount of EBOV-derived tetracistronic minigenome RNA incorporated into progeny trVLPs in the culture supernatant. Particularly, ibutamoren, which is a known agonist of growth hormone secretagogue receptor (GHSR), showed the most promising antiviral activity with a 50% effective concentration of 0.2 μM, a 50% cytotoxic concentration of 42.4 μM, and a selectivity index of 222.8. Here, we suggest a strategy for development of anti-EBOV therapeutics by adopting GHSR agonists as hit compounds.

Text Mining Driven Content Analysis of Ebola on News Media and Scientific Publications (텍스트 마이닝을 이용한 매체별 에볼라 주제 분석 - 바이오 분야 연구논문과 뉴스 텍스트 데이터를 이용하여 -)

  • An, Juyoung;Ahn, Kyubin;Song, Min
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.50 no.2
    • /
    • pp.289-307
    • /
    • 2016
  • Infectious diseases such as Ebola virus disease become a social issue and draw public attention to be a major topic on news or research. As a result, there have been a lot of studies on infectious diseases using text-mining techniques. However, there is no research on content analysis of two media channels that have distinct characteristics. Accordingly, in this study, we conduct topic analysis between news (representing a social perspective) and academic research paper (representing perspectives of bio-professionals). As text-mining techniques, topic modeling is applied to extract various topics according to the materials, and the word co-occurrence map based on selected bio entities is used to compare the perspectives of the materials specifically. For network analysis, topic map is built by using Gephi. Aforementioned approaches uncovered the difference of topics between two materials and the characteristics of the two materials. In terms of the word co-occurrence map, however, most of entities are shared in both materials. These results indicate that there are differences and commonalties between social and academic materials.

One Health Perspectives on Emerging Public Health Threats

  • Ryu, Sukhyun;Kim, Bryan Inho;Lim, Jun-Sik;Tan, Cheng Siang;Chun, Byung Chul
    • Journal of Preventive Medicine and Public Health
    • /
    • v.50 no.6
    • /
    • pp.411-414
    • /
    • 2017
  • Antimicrobial resistance and emerging infectious diseases, including avian influenza, Ebola virus disease, and Zika virus disease have significantly affected humankind in recent years. In the premodern era, no distinction was made between animal and human medicine. However, as medical science developed, the gap between human and animal science grew deeper. Cooperation among human, animal, and environmental sciences to combat emerging public health threats has become an important issue under the One Health Initiative. Herein, we presented the history of One Health, reviewed current public health threats, and suggested opportunities for the field of public health through better understanding of the One Health paradigm.

Insights of window-based mechanism approach to visualize composite biodata point in feature spaces

  • Daoud, Mosaab
    • Genomics & Informatics
    • /
    • v.17 no.1
    • /
    • pp.4.1-4.7
    • /
    • 2019
  • In this paper, we propose a window-based mechanism visualization approach as an alternative way to measure the seriousness of the difference among data-insights extracted from a composite biodata point. The approach is based on two components: undirected graph and Mosaab-metric space. The significant application of this approach is to visualize the segmented genome of a virus. We use Influenza and Ebola viruses as examples to demonstrate the robustness of this approach and to conduct comparisons. This approach can provide researchers with deep insights about information structures extracted from a segmented genome as a composite biodata point, and consequently, to capture the segmented genetic variations and diversity (variants) in composite data points.

A Study on the Circulation System of Biosafety Level 4 Laboratory Facilities (생물안전 4등급(BL4) 실험시설의 동선계획에 관한 연구)

  • Kwon, Soonjung;Choi, Hongbin
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.17 no.1
    • /
    • pp.23-32
    • /
    • 2011
  • Recently, with the advent of high risk infectious agent such as the Ebola virus, SARS, special research facilities dealing with such dangerous pathogenic are drawing attention gradually. Especially, this kind of facilities can be called BL4(Biosafety Level 4) facility. At the moment, Korean government is going to construct BL4 institute in order to handle efficiently such kind of pathogen. However, there are no proper design guidelines for BL4 facility. This paper proposes circulation system of BL4 facility on the basis of analysis of existing BL4 guidelines of Canada, and Korean BL3 facilities. The outcomes of this study are as follows. At first, functional areas of BL4 facilities have been divided into three categories according to the hazard level ; dangerous area, transitional area, and ordinary area. Secondly, circulation system of BL4 facility has been explored as a form of diagram according to the circulating subjects. These include human, laboratory animals, hazardous pathogen, equipments and cloth. This study has some limitations in that it lacks empirical evidences and concrete SOPs(Standard Operating Procedure). Despite of some weaknesses, it is expected to give some preliminary guidelines for the design of circulation system in BL4 facilities.

Analysis of Covid-19, Tourism, Stress Keywords Using Social Network Big Data_Semantic Network Analysis

  • Yun, Su-Hyun;Moon, Seok-Jae;Ryu, Ki-Hwan
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.204-210
    • /
    • 2022
  • From the 1970s to the present, the number of new infectious diseases such as SARS, Ebola virus, and MERS has steadily increased. The new infectious disease, COVID-19, which began in Wuhan, Hubei Province, China, has pushed the world into a pandemic era. As a result, Countries imposed restrictions on entry to foreign countries due to concerns over the spread of COVID-19, which led to a decrease in the movement of tourists. Due to the restriction of travel, keywords such as "Corona blue" have soared and depression has increased. Therefore, this study aims to analyze the stress meaning network of the COVID-19 era to derive keywords and come up with a plan for a travel-related platform of the Post-COVID 19 era. This study conducted analysis of travel and stress caused by COVID-19 using TEXTOM, a big data analysis tool, and conducted semantic network analysis using UCINET6. We also conducted a CONCOR analysis to classify keywords for clustering of words with similarities. However, since we have collected travel and stress-oriented data from the start to the present, we need to increase the number of analysis data and analyze more data in the future.