• Title/Summary/Keyword: transmission distribution

Search Result 1,531, Processing Time 0.042 seconds

Development of a Transmission/Distribution Integrated Analysis Hybrid Algorithm for System Operation Platform Including Distributed Generation (분산전원을 포함하는 시스템 운용 플랫폼을 위한 송배전 통합 해석 하이브리드 알고리즘 개발)

  • Song, Chong-Suk;Suh, Jae-Wan;Jang, Moon-Jong;Jang, Gil-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.1
    • /
    • pp.35-45
    • /
    • 2013
  • Owing to the increase in the penetration of distributed generation the DGs connected to the distribution system have an effect on the system conditions of the transmission system and neighboring distribution systems. This makes the separate analysis of the transmission and distribution system no longer valid and requires the consideration of both the system in the analysis process. This paper proposes a transmission/distribution integrated analysis hybrid algorithm that would ensure the accurate analysis of the system by reflecting the results of the transmission and distribution system analysis on each other. Different scenarios are being analysed in order to verify the effectiveness of the hybrid algorithm by observing the effects of the DG connected distribution system on the transmission system and neighboring distribution systems. The algorithm and simulations performed are being conducted by MATLAB and the IEEE 30 bus system and a test distribution system has been utilized for the transmission and distribution systems respectively.

Current Distribution and Loss Calculation of a Multi-layer HTS Transmission Cable (다층 고온 초전도케이블에서의 전류분류 및 손실 계산)

  • 이승욱;차귀수;이지광;한송엽
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.29-32
    • /
    • 2000
  • Superconducting transmission cable is one of interesting part in power application using high temperature super-conducting wire as transformance. One important parameter in HTS cable design is transport current distribution because it is related with current transmission capacity and loss. In this paper, we present the calculation theory of current distribution for multi-layer cable using the electric circuit model and in example, calculation results of current distribution and AC loss in each layer of 4-layer HTS transmission cable.

  • PDF

Analysis of Effect on the Transient State According to Common Grounding between Underground Transmission Systems and Distribution Systems (지중송전 및 배전계통의 공통접지에 따른 과도상태 영향 분석)

  • Lim, Kwang-Sik;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.740-741
    • /
    • 2007
  • This paper analyses the transient state of underground distribution system against single line to ground fault in underground transmission systems, when underground transmission systems and distribution systems are made of common grounding. Underground transmission systems and distribution systems are modeled by EMTP/ATPDraw. Simulation is carried out considering variation of parameters such as value of common grounding, balance load and unbalance load.

  • PDF

Flexible Transmission Expansion Planning for Integrating Wind Power Based on Wind Power Distribution Characteristics

  • Wang, Jianxue;Wang, Ruogu;Zeng, Pingliang;You, Shutang;Li, Yunhao;Zhang, Yao
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.709-718
    • /
    • 2015
  • Traditional transmission planning usually caters for rated wind power output. Due to the low occurrence probability of nominal capacity of wind power and huge investment in transmission, these planning methods will leads to low utilization rates of transmission lines and poor economic efficiency. This paper provides a novel transmission expansion planning method for integrating large-scale wind power. The wind power distribution characteristics of large-scale wind power output and its impact on transmission planning are analyzed. Based on the wind power distribution characteristics, this paper proposes a flexible and economic transmission planning model which saves substantial transmission investment through spilling a small amount of peak output of wind power. A methodology based on Benders decomposition is used to solve the model. The applicability and effectiveness of the model and algorithm are verified through a numerical case.

Analysis on Current Distribution of Four-Layer HTSC Power Transmission Cable with a Shield Layer

  • Lim Sung-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.308-312
    • /
    • 2006
  • The inductance difference between conducting layers of high-Tc superconducting (HTSC) power transmission cable causes the current sharing of each conducting layer to be unequal, which decreases the current transmission capacity of HTSC power cable. Therefore, the design for even current sharing in HTSC power transmission cable is required. In this paper, we investigated the current distribution of HTSC power cable with a shield layer dependent on the pitch length and the winding direction of each layer. To analyze the effect of the shield layer on the current sharing of the conducting layers of HTSC power cable, the current distribution of HTSC power cable without a shield layer was compared with the case of HTSC power cable with a shield layer. It could be found through the analysis from the computer simulations that the shield layer of HTSC power cable could be contributed to the improvement of current distribution of conducting layers at the specific pitch length and the winding direction of conducting layer. The result and discussion for the current distribution calculated for HTSC power transmission cable with a shield layer were presented and compared with the cable without a shield layer.

Asymmetric Transmission between Producer and Wholesale Prices in Farmed Olive Flounder Market (양식넙치 산지-도매가격간 비대칭적 가격전이 분석)

  • Lee, Heon-Dong;Ma, Chang-Mo
    • The Journal of Fisheries Business Administration
    • /
    • v.51 no.4
    • /
    • pp.69-83
    • /
    • 2020
  • The purpose of this paper is to empirically investigate whether asymmetric price transmission exists in the distribution stage of farmed olive flounder market. For the analysis, time series data were used for the producer prices of Jeju and Wando, and the wholesale prices of Incheon, Hanam and Busan. Through the Granger causality test, the causal relationship from the producer price to the wholesale price was derived and the asymmetric price transmission was analyzed using the autoregressive distributed lag model (ARDL). As a result of the analysis, it was found that there is a phenomenon of 'positive asymmetric price transmission' from the producer price to the wholesale price. This result can be one evidence that excess profits are received in the intermediate distribution stage, and can be said to be a result showing the incompleteness and inefficiency of the distribution structure of the farmed olive flounder. In the future, it is required to establish an information-sharing system in all stages of production, distribution, and consumption that can create a competitive environment for distribution participants and resolve information asymmetry. Also, it is necessary to review the distribution center specializing in live fish from the viewpoint of the establishment of new distribution channels and sales diversification strategy under the rapidly changing fisheries environment.

A Study on the Environmental Effects of Compact Tower in Transmission Line (송전철탑 Compact화에 따른 전기환경 영향 연구)

  • Lee, Jung-Won;Lee, Won-Kyo;Lee, Dong-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.645-650
    • /
    • 2010
  • The continuous increase demand for electric power leads to the additional construction of transmission facilities, but it is not easy to acquire right-of-way for transmission facilities. Therefor, there is a need for compact tower that can be built on a narrow right-of-way the compact tower with polymer insulation arm is a solution. It can be upgrading conventional 154 kV transmission line voltages to 345 kV levels. However transmission voltage is increasing, environment interference (corona noise, radio interference, etc.) will occur gradually. This environment interference is depending on the electrical clearances of tower and configuration of conductors. Therefore the analysis of the factors of environmental interference is necessary in order to upgrading transmission voltage. This paper presents the design factor of a compact tower to meet the environmental interference standard.

An Advanced Content Distribution and Management System using Parallel Transmission (병렬 전송을 이용한 향상된 콘텐츠 배포 및 관리 시스템)

  • Choi, O-Hoon;Lim, Jung-Eun;Kwon, Ju-Hum;Chung, Youn-Ky
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.10
    • /
    • pp.766-770
    • /
    • 2009
  • Recently, users of multimedia files demand a high capacity file via internet. However, it is difficult to guarantee QoS for high capacity files on internet because of its inconstant bandwidth. For guaranteeing the QoS, CDN (Content Delivery Network) is generally used for contents delivery service. Based on CDN, we propose Content Distribution and Management using Metadata (CDM) system which provides advanced transmission method and searching method. To enhance the transmission rate, CDM system supports segment-unit-based transmission method that enables parallel transmission. Also, we propose a distribution method through content based search.

Assessment of Transmission Losses with The 7th Basic Plan of Long-term Electricity Supply and Demand (7차 전력수급계획에 따른 송전계통 손실 분석에 관한 연구)

  • Kim, Sung-Yul;Lee, Yeo-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.2
    • /
    • pp.112-118
    • /
    • 2018
  • In recent years, decentralized power have been increasing due to environmental problems, liberalization of electricity markets and technological developments. These changes have led to the evolution of power generation, transmission, and distribution into discrete sectors and the division of integrated power systems. Therefore, studies are underway to efficiently supply power and reduce losses to each sector's demand. This is a major concern for system planners and operators, as it accounts for a relatively high proportion of total power, with a transmission and distribution loss of 4-6%. Therefore, this paper analyzes the status of loss management based on the current transmission and distribution loss rate of each country and transmission loss management cases of each national power company, and proposes a loss rate prediction algorithm according to the long-term transmission system plan. The proposed algorithm predicts the demand-based long-term evolution and the loss rate of the grid to which the transmission plan is applied.