• Title/Summary/Keyword: Nerve cuff electrode

Search Result 4, Processing Time 0.021 seconds

Implantable Nerve Cuff Electrode with Conductive Polymer for Improving Recording Signal Quality at Peripheral Nerve (말초 신경 신호 기록의 효율성 개선을 위한 전도성 폴리머가 적용된 생체삽입형 커프형 신경전극)

  • Park, Sung Jin;Lee, Yi Jae;Yun, Kwang-Seok;Kang, Ji Yoon;Lee, Soo Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.22-28
    • /
    • 2015
  • This study demonstrates a polyimide nerve cuff electrode with a conductive polymer for improving recording signal quality at peripheral nerve. The nerve cuff electrodes with platinum (Pt), iridium oxide (IrOx), and poly(3,4-ethylenedioxythiophene): p-toluene sulfonate (PEDOT:pTS) were fabricated and investigated their electrical characteristics for improving recorded nerve signal quality. The fabricated nerve cuff electrodes with Pt, IrOx, and PEDOT:pTS were characterized their impedance and CDC by using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. The impedance of PEDOT:pTS measured at 1 kHz was $257{\Omega}$, which was extremely lower than the value of the nerve cuff electrodes with IrOx ($15897{\Omega}$) and Pt ($952{\Omega}$), respectively. Furthermore, the charge delivery capacity (CDC) of the nerve cuff electrode with PEDOT:pTS was dramatically increased to 62 times than the nerve cuff electrode with IrOx. In ex-vivo test using extracted sciatic nerve of spaque-dawley rat (SD rat), the PEDOT:pTS group exhibited higher signal-to-interference ratio than IrOx group. These results indicated that the nerve cuff electrode with PEDOT:pTS is promising for effective implantable nerve signal recording.

Development of a Low-Noise Amplifier System for Nerve Cuff Electrodes (커프 신경전극을 위한 저잡음 증폭기 시스템 개발)

  • Song, Kang-Il;Chu, Jun-Uk;Suh, Jun-Kyo Francis;Choi, Kui-Won;Yoo, Sun-K.;Youn, In-Chan
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.1
    • /
    • pp.45-54
    • /
    • 2011
  • Cuff electrodes have a benefit for chronic electroneurogram(ENG) recording while minimizing nerve damage. However, the ENG signals are usually contaminated by electromyogram(EMG) activity from the surrounding muscle, the thermal noise generated within the source resistance, and the electric noise generated primarily at the first stage of the amplifier. This paper proposes a new cuff electrode to reduce the interference of EMG signals. An additional middle electrode was placed at the center of cuff electrode. As a result, the proposed cuff electrode achieved a higher signal-to-interference ratio compared to the conventional tripolar cuff. The cuff electrode was then assembled together with closure, headstage, and hermetic case including electronic circuits. This paper also presents a lownoise amplifier system to improve signal-to-noise ratio. The circuit was designed based on the noise analysis to minimize the electronic noise. The result shows that the total noise of the amplifier was below $1{\mu}V_{rms}$ for a cuff impedance of $1\;k{\Omega}$ and the common-mode rejection ratio was 115 dB at 1 kHz. In the current study, the performance of nerve cuff electrode system was evaluated by monitoring afferent nerve signals under mechanical stimuli in a rat animal model.

Study of Laryngeal Evoked Electromyography Method in Rats (백서를 이용한 후두 유발 근전도 검사 방법에 대한 연구)

  • 조선희;이재연;민선식;신유리;정성민
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.11 no.2
    • /
    • pp.178-184
    • /
    • 2000
  • Laryngeal evoked EMG is the objective and quantitative method to measure the innervation of laryngeal muscle. If there is a mobility disorder of vocal cords, the cause and location of neural lesion co be understood by the laryngeal evoked EMG and if there is a vocal cord paralysis, the degree of recovery and the policy of treatment can be determined by it. Recently, the studies of reinnervation after recurrent laryngeal nerve injury have been actively carried out. Laryngeal evoked EMC is useful to these studies. The aim of study is to know whether noninvasive methods for stimulating the recurrent laryngeal nerve and for recording of compound action potential(CAP) using surface electrode are as useful as the invasive method using needle electrode. We obtained EMG of laryngeal muscle by various stimulating and recording methods : 1) Direct nerve stimulation by placing nerve cuff electrode made out of silastic tube and platinum wire and recording by insertion of hook wire electrode into posterior cricoarytenoid(PCA) and thyroarytenoid(TA) muscles, respectively. 2) Recording of compound action potential by surface electrode after stimulation of recurrent laryngeal nerve by the insertion of 27 gauge of needle electrode. 3) Recording of compound action potential by surface electrode after stimulating the recurrent laryngeal nerve by transcutaneous blunt rod electrode at tracheoesophageal groove. The amplitude, duration and latency of the CAP evoked by recurrent laryngeal nerve stimulation were compared among the three groups. The amplitude of CAP was smallest in the group recorded from posterior cricoarytenoid and hyroarytenoid muscle, and that recorded by surface electrode after stimulation by needle electrode was largest. The difference in amplitude between the group by hook wire recording and the two groups by surface electrode recording was significant statistically. There is no significant difference in duration and latency among three groups. Since the waveform of CAP from all three methods has similar duration, latency, we concluded that noninvasive method is a useful as invasive methods.

  • PDF